| 1 | #' constructionModelesLassoMLE |
| 2 | #' |
| 3 | #' TODO: description |
| 4 | #' |
| 5 | #' @param ... |
| 6 | #' |
| 7 | #' @return ... |
| 8 | #' |
| 9 | #' export |
| 10 | constructionModelesLassoMLE = function(phiInit, rhoInit, piInit, gamInit, mini, maxi, |
| 11 | gamma, X, Y, thresh, tau, S, ncores=3, fast=TRUE, verbose=FALSE) |
| 12 | { |
| 13 | if (ncores > 1) |
| 14 | { |
| 15 | cl = parallel::makeCluster(ncores, outfile='') |
| 16 | parallel::clusterExport( cl, envir=environment(), |
| 17 | varlist=c("phiInit","rhoInit","gamInit","mini","maxi","gamma","X","Y","thresh", |
| 18 | "tau","S","ncores","verbose") ) |
| 19 | } |
| 20 | |
| 21 | # Individual model computation |
| 22 | computeAtLambda <- function(lambda) |
| 23 | { |
| 24 | if (ncores > 1) |
| 25 | require("valse") #nodes start with an empty environment |
| 26 | |
| 27 | if (verbose) |
| 28 | print(paste("Computations for lambda=",lambda)) |
| 29 | |
| 30 | n = dim(X)[1] |
| 31 | p = dim(phiInit)[1] |
| 32 | m = dim(phiInit)[2] |
| 33 | k = dim(phiInit)[3] |
| 34 | sel.lambda = S[[lambda]]$selected |
| 35 | # col.sel = which(colSums(sel.lambda)!=0) #if boolean matrix |
| 36 | col.sel <- which( sapply(sel.lambda,length) > 0 ) #if list of selected vars |
| 37 | if (length(col.sel) == 0) |
| 38 | return (NULL) |
| 39 | |
| 40 | # lambda == 0 because we compute the EMV: no penalization here |
| 41 | res = EMGLLF(phiInit[col.sel,,],rhoInit,piInit,gamInit,mini,maxi,gamma,0, |
| 42 | X[,col.sel], Y, tau, fast) |
| 43 | |
| 44 | # Eval dimension from the result + selected |
| 45 | phiLambda2 = res$phi |
| 46 | rhoLambda = res$rho |
| 47 | piLambda = res$pi |
| 48 | phiLambda = array(0, dim = c(p,m,k)) |
| 49 | for (j in seq_along(col.sel)) |
| 50 | phiLambda[col.sel[j],sel.lambda[[j]],] = phiLambda2[j,sel.lambda[[j]],] |
| 51 | dimension = length(unlist(sel.lambda)) |
| 52 | |
| 53 | # Computation of the loglikelihood |
| 54 | densite = vector("double",n) |
| 55 | for (r in 1:k) |
| 56 | { |
| 57 | if (length(col.sel)==1){ |
| 58 | delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%t(phiLambda[col.sel,,r]))) |
| 59 | } else delta = (Y%*%rhoLambda[,,r] - (X[, col.sel]%*%phiLambda[col.sel,,r])) |
| 60 | densite = densite + piLambda[r] * |
| 61 | det(rhoLambda[,,r])/(sqrt(2*base::pi))^m * exp(-diag(tcrossprod(delta))/2.0) |
| 62 | } |
| 63 | llhLambda = c( sum(log(densite)), (dimension+m+1)*k-1 ) |
| 64 | list("phi"= phiLambda, "rho"= rhoLambda, "pi"= piLambda, "llh" = llhLambda) |
| 65 | } |
| 66 | |
| 67 | # For each lambda, computation of the parameters |
| 68 | out = |
| 69 | if (ncores > 1) |
| 70 | parLapply(cl, 1:length(S), computeAtLambda) |
| 71 | else |
| 72 | lapply(1:length(S), computeAtLambda) |
| 73 | |
| 74 | if (ncores > 1) |
| 75 | parallel::stopCluster(cl) |
| 76 | |
| 77 | out |
| 78 | } |