Commit | Line | Data |
---|---|---|
086ca318 BA |
1 | #' valse |
2 | #' | |
3 | #' Main function | |
4 | #' | |
5 | #' @param X matrix of covariates (of size n*p) | |
6 | #' @param Y matrix of responses (of size n*m) | |
7 | #' @param procedure among 'LassoMLE' or 'LassoRank' | |
8 | #' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC' | |
9 | #' @param gamma integer for the power in the penaly, by default = 1 | |
10 | #' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10 | |
11 | #' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100 | |
12 | #' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4 | |
13 | #' @param kmin integer, minimum number of clusters, by default = 2 | |
14 | #' @param kmax integer, maximum number of clusters, by default = 10 | |
15 | #' @param rang.min integer, minimum rank in the low rank procedure, by default = 1 | |
16 | #' @param rang.max integer, maximum rank in the | |
17 | #' | |
18 | #' @return a list with estimators of parameters | |
19 | #' | |
20 | #' @examples | |
21 | #' #TODO: a few examples | |
22 | #' @export | |
2279a641 | 23 | valse = function(X, Y, procedure='LassoMLE', selecMod='DDSE', gamma=1, mini=10, maxi=50, |
086cf723 | 24 | eps=1e-4, kmin=2, kmax=4, rang.min=1, rang.max=10, ncores_outer=1, ncores_inner=1, size_coll_mod = 50, |
2279a641 | 25 | verbose=FALSE) |
086ca318 | 26 | { |
086ca318 BA |
27 | p = dim(X)[2] |
28 | m = dim(Y)[2] | |
29 | n = dim(X)[1] | |
4cc632c9 | 30 | |
4cc632c9 BA |
31 | if (verbose) |
32 | print("main loop: over all k and all lambda") | |
33 | ||
2279a641 | 34 | if (ncores_outer > 1) |
086ca318 | 35 | { |
08f4604c | 36 | cl = parallel::makeCluster(ncores_outer, outfile='') |
4cc632c9 BA |
37 | parallel::clusterExport( cl=cl, envir=environment(), varlist=c("X","Y","procedure", |
38 | "selecMod","gamma","mini","maxi","eps","kmin","kmax","rang.min","rang.max", | |
08f4604c | 39 | "ncores_outer","ncores_inner","verbose","p","m") ) |
4cc632c9 BA |
40 | } |
41 | ||
0eb161e3 BA |
42 | # Compute models with k components |
43 | computeModels <- function(k) | |
4cc632c9 | 44 | { |
2279a641 | 45 | if (ncores_outer > 1) |
4cc632c9 BA |
46 | require("valse") #nodes start with an empty environment |
47 | ||
48 | if (verbose) | |
49 | print(paste("Parameters initialization for k =",k)) | |
0eb161e3 | 50 | #smallEM initializes parameters by k-means and regression model in each component, |
086ca318 BA |
51 | #doing this 20 times, and keeping the values maximizing the likelihood after 10 |
52 | #iterations of the EM algorithm. | |
4cc632c9 BA |
53 | P = initSmallEM(k, X, Y) |
54 | grid_lambda <- computeGridLambda(P$phiInit, P$rhoInit, P$piInit, P$gamInit, X, Y, | |
55 | gamma, mini, maxi, eps) | |
086cf723 | 56 | if (length(grid_lambda)>size_coll_mod) |
57 | grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = size_coll_mod)] | |
4cc632c9 BA |
58 | |
59 | if (verbose) | |
60 | print("Compute relevant parameters") | |
086ca318 | 61 | #select variables according to each regularization parameter |
0eb161e3 BA |
62 | #from the grid: S$selected corresponding to selected variables |
63 | S = selectVariables(P$phiInit, P$rhoInit, P$piInit, P$gamInit, mini, maxi, gamma, | |
64 | grid_lambda, X, Y, 1e-8, eps, ncores_inner) #TODO: 1e-8 as arg?! eps? | |
086cf723 | 65 | |
086ca318 | 66 | if (procedure == 'LassoMLE') |
39046da6 | 67 | { |
4cc632c9 BA |
68 | if (verbose) |
69 | print('run the procedure Lasso-MLE') | |
086ca318 BA |
70 | #compute parameter estimations, with the Maximum Likelihood |
71 | #Estimator, restricted on selected variables. | |
08f4604c BA |
72 | models <- constructionModelesLassoMLE(P$phiInit, P$rhoInit, P$piInit, P$gamInit, |
73 | mini, maxi, gamma, X, Y, thresh, eps, S, ncores_inner, artefact = 1e3, verbose) | |
086ca318 BA |
74 | } |
75 | else | |
39046da6 | 76 | { |
4cc632c9 BA |
77 | if (verbose) |
78 | print('run the procedure Lasso-Rank') | |
086ca318 BA |
79 | #compute parameter estimations, with the Low Rank |
80 | #Estimator, restricted on selected variables. | |
0eb161e3 | 81 | models <- constructionModelesLassoRank(S$Pi, S$Rho, mini, maxi, X, Y, eps, A1, |
2279a641 | 82 | rank.min, rank.max, ncores_inner, verbose) |
086ca318 | 83 | } |
08f4604c BA |
84 | #attention certains modeles sont NULL après selectVariables |
85 | models = models[sapply(models, function(cell) !is.null(cell))] | |
0eb161e3 | 86 | models |
086ca318 | 87 | } |
4cc632c9 | 88 | |
0eb161e3 BA |
89 | # List (index k) of lists (index lambda) of models |
90 | models_list <- | |
19041906 | 91 | if (ncores_outer > 1) |
0eb161e3 | 92 | parLapply(cl, kmin:kmax, computeModels) |
4cc632c9 | 93 | else |
0eb161e3 | 94 | lapply(kmin:kmax, computeModels) |
19041906 | 95 | if (ncores_outer > 1) |
4cc632c9 BA |
96 | parallel::stopCluster(cl) |
97 | ||
0eb161e3 BA |
98 | if (! requireNamespace("capushe", quietly=TRUE)) |
99 | { | |
100 | warning("'capushe' not available: returning all models") | |
101 | return (models_list) | |
102 | } | |
103 | ||
08f4604c BA |
104 | # Get summary "tableauRecap" from models |
105 | tableauRecap = do.call( rbind, lapply( models_list, function(models) { | |
106 | #Pour un groupe de modeles (même k, différents lambda): | |
107 | llh = matrix(ncol = 2) | |
108 | for (l in seq_along(models)) | |
b9b0b72a | 109 | llh = rbind(llh, models[[l]]$llh) #TODO: LLF? harmonize between EMGLLF and EMGrank? |
08f4604c BA |
110 | LLH = llh[-1,1] |
111 | D = llh[-1,2] | |
112 | k = length(models[[1]]$pi) | |
113 | cbind(LLH, D, rep(k, length(models)), 1:length(models)) | |
114 | } ) ) | |
115 | tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,] | |
116 | tableauRecap = tableauRecap[(tableauRecap[,1])!=Inf,] | |
086ca318 | 117 | data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1]) |
b9b0b72a | 118 | browser() |
0eb161e3 | 119 | modSel = capushe::capushe(data, n) |
086ca318 BA |
120 | indModSel <- |
121 | if (selecMod == 'DDSE') | |
122 | as.numeric(modSel@DDSE@model) | |
123 | else if (selecMod == 'Djump') | |
124 | as.numeric(modSel@Djump@model) | |
125 | else if (selecMod == 'BIC') | |
126 | modSel@BIC_capushe$model | |
127 | else if (selecMod == 'AIC') | |
128 | modSel@AIC_capushe$model | |
086cf723 | 129 | models_list[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]] |
086ca318 | 130 | } |