oneIteration = function(..........) { cl_clust = parallel::makeCluster(ncores_clust) parallel::clusterExport(cl_clust, .............., envir=........) indices_clust = indices_task[[i]] repeat { nb_workers = max( 1, round( length(indices_clust) / nb_series_per_chunk ) ) indices_workers = list() #indices[[i]] == (start_index,number_of_elements) for (i in 1:nb_workers) { upper_bound = ifelse( i 0) { curves = computeSynchrones(cl) dists = computeWerDists(curves) cl = computeClusters(dists, K2) } cl } computeClusters = function(data, K) { library(cluster) pam_output = cluster::pam(data, K) return ( list( clusts=pam_output$clustering, medoids=pam_output$medoids, ranks=pam_output$id.med ) ) } #TODO: appendCoeffs() en C --> serialize et append to file computeSynchrones = function(...) { } #Entrée : courbes synchrones, soit après étape 1 itérée, soit après chaqure étape 1 computeWerDist = function(conso) { if (!require("Rwave", quietly=TRUE)) stop("Unable to load Rwave library") n <- nrow(conso) delta <- ncol(conso) #TODO: automatic tune of all these parameters ? (for other users) nvoice <- 4 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(conso)) noctave = 13 # 4 here represent 2^5 = 32 half-hours ~ 1 day #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?) scalevector <- 2^(4:(noctave * nvoice) / nvoice) * 2 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1 s0=2 w0=2*pi scaled=FALSE s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 ) totnoct = noctave + as.integer(s0log/nvoice) + 1 # (normalized) observations node with CWT Xcwt4 <- lapply(seq_len(n), function(i) { ts <- scale(ts(conso[i,]), center=TRUE, scale=scaled) totts.cwt = Rwave::cwt(ts,totnoct,nvoice,w0,plot=0) ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)] #Normalization sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0) sqres <- sweep(ts.cwt,MARGIN=2,sqs,'*') sqres / max(Mod(sqres)) }) Xwer_dist <- matrix(0., n, n) fcoefs = rep(1/3, 3) #moving average on 3 values (TODO: very slow! correct?!) for (i in 1:(n-1)) { for (j in (i+1):n) { #TODO: later, compute CWT here (because not enough storage space for 32M series) # 'circular=TRUE' is wrong, should just take values on the sides; to rewrite in C num <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) WX <- filter(Mod(Xcwt4[[i]] * Conj(Xcwt4[[i]])), fcoefs, circular=TRUE) WY <- filter(Mod(Xcwt4[[j]] * Conj(Xcwt4[[j]])), fcoefs, circular=TRUE) wer2 <- sum(colSums(num)^2) / sum( sum(colSums(WX) * colSums(WY)) ) Xwer_dist[i,j] <- sqrt(delta * ncol(Xcwt4[[1]]) * (1 - wer2)) Xwer_dist[j,i] <- Xwer_dist[i,j] } } diag(Xwer_dist) <- numeric(n) Xwer_dist }