Commit | Line | Data |
---|---|---|
0ba1b11c | 1 | #' computeGridLambda |
3453829e BA |
2 | #' |
3 | #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator | |
4 | #' | |
5 | #' @param phiInit value for phi | |
6 | #' @param rhoInit for rho | |
7 | #' @param piInit for pi | |
8 | #' @param gamInit value for gamma | |
9 | #' @param X matrix of covariates (of size n*p) | |
10 | #' @param Y matrix of responses (of size n*m) | |
11 | #' @param gamma power of weights in the penalty | |
12 | #' @param mini minimum number of iterations in EM algorithm | |
13 | #' @param maxi maximum number of iterations in EM algorithm | |
14 | #' @param eps threshold to stop EM algorithm | |
1196a43d | 15 | #' @param fast boolean to enable or not the C function call |
3453829e | 16 | #' |
6af1d489 BA |
17 | #' @return the grid of regularization parameters for the Lasso estimator. The output is a vector with nonnegative values that are relevant |
18 | #' to be considered as regularization parameter as they are equivalent to a 0 in the regression parameter. | |
3453829e BA |
19 | #' |
20 | #' @export | |
0ba1b11c | 21 | computeGridLambda <- function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, |
3453829e BA |
22 | maxi, eps, fast) |
23 | { | |
24 | n <- nrow(X) | |
25 | p <- ncol(X) | |
26 | m <- ncol(Y) | |
27 | k <- length(piInit) | |
28 | ||
0ba1b11c | 29 | list_EMG <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda = 0, |
3453829e BA |
30 | X, Y, eps, fast) |
31 | ||
32 | grid <- array(0, dim = c(p, m, k)) | |
33 | for (j in 1:p) | |
34 | { | |
35 | for (mm in 1:m) | |
36 | grid[j, mm, ] <- abs(list_EMG$S[j, mm, ])/(n * list_EMG$pi^gamma) | |
37 | } | |
38 | sort(unique(grid)) | |
39 | } |