Commit | Line | Data |
---|---|---|
a961f8a1 BA |
1 | #' @include b_Algorithm.R |
2 | ||
3 | #' @title K Nearest Neighbors Algorithm | |
4 | #' | |
5 | #' @description K Nearest Neighbors Algorithm. | |
6 | #' Inherits \code{\link{Algorithm}} | |
7 | #' | |
8 | #' @field k Number of neighbors to consider. Default: \code{n^(2/3)} | |
9 | #' | |
10 | KnearestNeighbors = setRefClass( | |
11 | Class = "KnearestNeighbors", | |
12 | ||
13 | fields = c( | |
14 | k = "numeric" | |
15 | ), | |
16 | ||
17 | contains = "Algorithm", | |
18 | ||
19 | methods = list( | |
20 | predictOne = function(X, Y, x) | |
21 | { | |
22 | "Find the neighbors of one row, and solve a constrained linear system to obtain weights" | |
23 | ||
24 | distances = sqrt(apply(X, 1, function(z)(return (sum((z-x)^2))))) | |
25 | rankedHistory = sort(distances, index.return=TRUE) | |
26 | n = length(Y) | |
27 | k_ = ifelse(length(k) == 0 || k <= 0. || k > n, getKnn(n), as.integer(k)) | |
28 | weight = ridgeSolve(matricize(X[rankedHistory$ix[1:k_],]), Y[rankedHistory$ix[1:k_]], LAMBDA) | |
29 | ||
30 | return (sum(x * weight)) | |
31 | }, | |
32 | predict_noNA = function(XY, x) | |
33 | { | |
34 | X = XY[,names(XY) != "Measure"] | |
35 | K = ncol(XY) - 1 | |
36 | if (K == 1) | |
37 | X = as.matrix(X) | |
38 | else if (length(XY[["Measure"]]) == 1) | |
39 | X = t(as.matrix(X)) | |
40 | Y = XY[,"Measure"] | |
41 | x = matricize(x) | |
42 | res = c() | |
43 | for (i in 1:nrow(x)) | |
44 | res = c(res, predictOne(X, Y, x[i,])) | |
45 | return (res) | |
46 | } | |
47 | ) | |
48 | ) |