Commit | Line | Data |
---|---|---|
7733758e BA |
1 | #' standardCV_core |
2 | #' | |
3 | #' Cross-validation method, added here as an example. | |
4 | #' Parameters are described in ?agghoo and ?AgghooCV | |
5 | standardCV_core <- function(data, target, task, gmodel, params, loss, CV) { | |
6 | n <- nrow(data) | |
7 | shuffle_inds <- NULL | |
8 | if (CV$type == "vfold" && CV$shuffle) | |
9 | shuffle_inds <- sample(n, n) | |
10 | list_testinds <- list() | |
11 | for (v in seq_len(CV$V)) | |
12 | list_testinds[[v]] <- get_testIndices(n, CV, v, shuffle_inds) | |
13 | gmodel <- agghoo::Model$new(data, target, task, gmodel, params) | |
14 | best_error <- Inf | |
15 | best_p <- NULL | |
16 | for (p in seq_len(gmodel$nmodels)) { | |
17 | error <- Reduce('+', lapply(seq_len(CV$V), function(v) { | |
18 | testIdx <- list_testinds[[v]] | |
19 | d <- splitTrainTest(data, target, testIdx) | |
20 | model_pred <- gmodel$get(d$dataTrain, d$targetTrain, p) | |
21 | prediction <- model_pred(d$dataTest) | |
22 | loss(prediction, d$targetTest) | |
23 | }) ) | |
24 | if (error <= best_error) { | |
25 | if (error == best_error) | |
26 | best_p[[length(best_p)+1]] <- p | |
27 | else { | |
28 | best_p <- list(p) | |
29 | best_error <- error | |
30 | } | |
31 | } | |
32 | } | |
33 | chosenP <- best_p[[ sample(length(best_p), 1) ]] | |
34 | list(model=gmodel$get(data, target, chosenP), param=gmodel$getParam(chosenP)) | |
35 | } | |
36 | ||
a7ec4f8a BA |
37 | #' CVvoting_core |
38 | #' | |
39 | #' "voting" cross-validation method, added here as an example. | |
40 | #' Parameters are described in ?agghoo and ?AgghooCV | |
41 | CVvoting_core <- function(data, target, task, gmodel, params, loss, CV) { | |
42 | CV <- checkCV(CV) | |
43 | n <- nrow(data) | |
44 | shuffle_inds <- NULL | |
45 | if (CV$type == "vfold" && CV$shuffle) | |
46 | shuffle_inds <- sample(n, n) | |
a7ec4f8a | 47 | gmodel <- agghoo::Model$new(data, target, task, gmodel, params) |
7733758e | 48 | bestP <- rep(0, gmodel$nmodels) |
a7ec4f8a BA |
49 | for (v in seq_len(CV$V)) { |
50 | test_indices <- get_testIndices(n, CV, v, shuffle_inds) | |
51 | d <- splitTrainTest(data, target, test_indices) | |
52 | best_p <- NULL | |
53 | best_error <- Inf | |
54 | for (p in seq_len(gmodel$nmodels)) { | |
55 | model_pred <- gmodel$get(d$dataTrain, d$targetTrain, p) | |
56 | prediction <- model_pred(d$dataTest) | |
57 | error <- loss(prediction, d$targetTest) | |
58 | if (error <= best_error) { | |
59 | if (error == best_error) | |
60 | best_p[[length(best_p)+1]] <- p | |
61 | else { | |
62 | best_p <- list(p) | |
63 | best_error <- error | |
64 | } | |
65 | } | |
66 | } | |
67 | for (p in best_p) | |
68 | bestP[p] <- bestP[p] + 1 | |
69 | } | |
70 | # Choose a param at random in case of ex-aequos: | |
71 | maxP <- max(bestP) | |
72 | chosenP <- sample(which(bestP == maxP), 1) | |
73 | list(model=gmodel$get(data, target, chosenP), param=gmodel$getParam(chosenP)) | |
74 | } | |
75 | ||
17ea2f13 BA |
76 | #' standardCV_run |
77 | #' | |
78 | #' Run and eval the standard cross-validation procedure. | |
79 | #' Parameters are rather explicit except "floss", which corresponds to the | |
80 | #' "final" loss function, applied to compute the error on testing dataset. | |
43a6578d | 81 | standardCV_run <- function( |
17ea2f13 | 82 | dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ... |
43a6578d | 83 | ) { |
afa67660 BA |
84 | args <- list(...) |
85 | task <- checkTask(args$task, targetTrain) | |
86 | modPar <- checkModPar(args$gmodel, args$params) | |
87 | loss <- checkLoss(args$loss, task) | |
17ea2f13 | 88 | CV <- checkCV(args$CV) |
afa67660 BA |
89 | s <- standardCV_core( |
90 | dataTrain, targetTrain, task, modPar$gmodel, modPar$params, loss, CV) | |
43a6578d BA |
91 | if (verbose) |
92 | print(paste( "Parameter:", s$param )) | |
afa67660 BA |
93 | p <- s$model(dataTest) |
94 | err <- floss(p, targetTest) | |
43a6578d | 95 | if (verbose) |
afa67660 BA |
96 | print(paste("error CV:", err)) |
97 | invisible(err) | |
43a6578d BA |
98 | } |
99 | ||
7733758e BA |
100 | #' CVvoting_run |
101 | #' | |
102 | #' Run and eval the voting cross-validation procedure. | |
103 | #' Parameters are rather explicit except "floss", which corresponds to the | |
104 | #' "final" loss function, applied to compute the error on testing dataset. | |
7733758e BA |
105 | CVvoting_run <- function( |
106 | dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ... | |
107 | ) { | |
108 | args <- list(...) | |
109 | task <- checkTask(args$task, targetTrain) | |
110 | modPar <- checkModPar(args$gmodel, args$params) | |
111 | loss <- checkLoss(args$loss, task) | |
112 | CV <- checkCV(args$CV) | |
113 | s <- CVvoting_core( | |
114 | dataTrain, targetTrain, task, modPar$gmodel, modPar$params, loss, CV) | |
115 | if (verbose) | |
116 | print(paste( "Parameter:", s$param )) | |
117 | p <- s$model(dataTest) | |
118 | err <- floss(p, targetTest) | |
119 | if (verbose) | |
120 | print(paste("error CV:", err)) | |
121 | invisible(err) | |
122 | } | |
123 | ||
17ea2f13 BA |
124 | #' agghoo_run |
125 | #' | |
126 | #' Run and eval the agghoo procedure. | |
127 | #' Parameters are rather explicit except "floss", which corresponds to the | |
128 | #' "final" loss function, applied to compute the error on testing dataset. | |
43a6578d | 129 | agghoo_run <- function( |
17ea2f13 | 130 | dataTrain, dataTest, targetTrain, targetTest, floss, verbose, ... |
43a6578d | 131 | ) { |
17ea2f13 BA |
132 | args <- list(...) |
133 | CV <- checkCV(args$CV) | |
134 | # Must remove CV arg, or agghoo will complain "error: unused arg" | |
135 | args$CV <- NULL | |
136 | a <- do.call(agghoo, c(list(data=dataTrain, target=targetTrain), args)) | |
43a6578d BA |
137 | a$fit(CV) |
138 | if (verbose) { | |
139 | print("Parameters:") | |
140 | print(unlist(a$getParams())) | |
141 | } | |
142 | pa <- a$predict(dataTest) | |
143 | err <- floss(pa, targetTest) | |
144 | if (verbose) | |
145 | print(paste("error agghoo:", err)) | |
afa67660 | 146 | invisible(err) |
43a6578d BA |
147 | } |
148 | ||
17ea2f13 BA |
149 | #' compareTo |
150 | #' | |
151 | #' Compare a list of learning methods (or run only one), on data/target. | |
152 | #' | |
153 | #' @param data Data matrix or data.frame | |
154 | #' @param target Target vector (generally) | |
155 | #' @param method_s Either a single function, or a list | |
156 | #' (examples: agghoo_run, standardCV_run) | |
157 | #' @param rseed Seed of the random generator (-1 means "random seed") | |
158 | #' @param floss Loss function to compute the error on testing dataset. | |
159 | #' @param verbose TRUE to request methods to be verbose. | |
160 | #' @param ... arguments passed to method_s function(s) | |
161 | #' | |
162 | #' @export | |
43a6578d | 163 | compareTo <- function( |
afa67660 | 164 | data, target, method_s, rseed=-1, floss=NULL, verbose=TRUE, ... |
43a6578d BA |
165 | ) { |
166 | if (rseed >= 0) | |
167 | set.seed(rseed) | |
168 | n <- nrow(data) | |
169 | test_indices <- sample( n, round(n / ifelse(n >= 500, 10, 5)) ) | |
afa67660 | 170 | d <- splitTrainTest(data, target, test_indices) |
43a6578d BA |
171 | |
172 | # Set error function to be used on model outputs (not in core method) | |
afa67660 | 173 | task <- checkTask(list(...)$task, target) |
43a6578d BA |
174 | if (is.null(floss)) { |
175 | floss <- function(y1, y2) { | |
176 | ifelse(task == "classification", mean(y1 != y2), mean(abs(y1 - y2))) | |
177 | } | |
178 | } | |
179 | ||
180 | # Run (and compare) all methods: | |
181 | runOne <- function(o) { | |
17ea2f13 | 182 | o(d$dataTrain, d$dataTest, d$targetTrain, d$targetTest, floss, verbose, ...) |
43a6578d | 183 | } |
afa67660 | 184 | errors <- c() |
43a6578d BA |
185 | if (is.list(method_s)) |
186 | errors <- sapply(method_s, runOne) | |
187 | else if (is.function(method_s)) | |
188 | errors <- runOne(method_s) | |
43a6578d BA |
189 | invisible(errors) |
190 | } | |
191 | ||
17ea2f13 BA |
192 | #' compareMulti |
193 | #' | |
194 | #' Run compareTo N times in parallel. | |
195 | #' | |
196 | #' @inheritParams compareTo | |
197 | #' @param N Number of calls to method(s) | |
198 | #' @param nc Number of cores. Set to parallel::detectCores() if undefined. | |
199 | #' Set it to any value <=1 to say "no parallelism". | |
200 | #' @param verbose TRUE to print task numbers and "Errors:" in the end. | |
201 | #' | |
202 | #' @export | |
43a6578d | 203 | compareMulti <- function( |
17ea2f13 | 204 | data, target, method_s, N=100, nc=NA, floss=NULL, verbose=TRUE, ... |
43a6578d BA |
205 | ) { |
206 | if (is.na(nc)) | |
207 | nc <- parallel::detectCores() | |
afa67660 BA |
208 | |
209 | # "One" comparison for each method in method_s (list) | |
43a6578d | 210 | compareOne <- function(n) { |
17ea2f13 BA |
211 | if (verbose) |
212 | print(n) | |
afa67660 | 213 | compareTo(data, target, method_s, n, floss, verbose=FALSE, ...) |
43a6578d | 214 | } |
afa67660 | 215 | |
43a6578d | 216 | errors <- if (nc >= 2) { |
43a6578d BA |
217 | parallel::mclapply(1:N, compareOne, mc.cores = nc) |
218 | } else { | |
219 | lapply(1:N, compareOne) | |
220 | } | |
17ea2f13 BA |
221 | if (verbose) |
222 | print("Errors:") | |
43a6578d BA |
223 | Reduce('+', errors) / N |
224 | } | |
17ea2f13 BA |
225 | |
226 | #' compareRange | |
227 | #' | |
228 | #' Run compareMulti on several values of the parameter V. | |
229 | #' | |
230 | #' @inheritParams compareMulti | |
231 | #' @param V_range Values of V to be tested. | |
232 | #' | |
233 | #' @export | |
234 | compareRange <- function( | |
a78bd1c0 | 235 | data, target, method_s, N=100, nc=NA, floss=NULL, V_range=c(10,15,20), ... |
17ea2f13 BA |
236 | ) { |
237 | args <- list(...) | |
238 | # Avoid warnings if V is left unspecified: | |
239 | CV <- suppressWarnings( checkCV(args$CV) ) | |
240 | errors <- lapply(V_range, function(V) { | |
241 | args$CV$V <- V | |
242 | do.call(compareMulti, c(list(data=data, target=target, method_s=method_s, | |
243 | N=N, nc=nc, floss=floss, verbose=F), args)) | |
244 | }) | |
245 | print(paste(V_range, errors)) | |
246 | } |