From: Benjamin Auder Date: Sun, 8 Dec 2019 10:29:57 +0000 (+0100) Subject: Almost first draft for optim with W (still Compute_Omega to write) X-Git-Url: https://git.auder.net/js/pieces/bundles/doc/scripts/current/%7B%7B%20pkg.url%20%7D%7D?a=commitdiff_plain;h=7737c2fa8362b2bf590c2e2f9dcbd75424c51271;p=morpheus.git Almost first draft for optim with W (still Compute_Omega to write) --- diff --git a/pkg/R/optimParams.R b/pkg/R/optimParams.R index 948167b..934a757 100644 --- a/pkg/R/optimParams.R +++ b/pkg/R/optimParams.R @@ -12,8 +12,8 @@ #' \item β: regression matrix, size dxK #' \item b: intercepts, size K #' } -#' x0 is a vector containing respectively the K-1 first elements of p, then β by -#' columns, and finally b: \code{x0 = c(p[1:(K-1)],as.double(β),b)}. +#' θ0 is a vector containing respectively the K-1 first elements of p, then β by +#' columns, and finally b: \code{θ0 = c(p[1:(K-1)],as.double(β),b)}. #' #' @seealso \code{multiRun} to estimate statistics based on β, and #' \code{generateSampleIO} for I/O random generation. @@ -23,11 +23,11 @@ #' io = generateSampleIO(10000, 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit") #' μ = computeMu(io$X, io$Y, list(K=2)) #' o <- optimParams(io$X, io$Y, 2, "logit") -#' x0 <- list(p=1/2, β=μ, b=c(0,0)) -#' par0 <- o$run(x0) +#' θ0 <- list(p=1/2, β=μ, b=c(0,0)) +#' par0 <- o$run(θ0) #' # Compare with another starting point -#' x1 <- list(p=1/2, β=2*μ, b=c(0,0)) -#' par1 <- o$run(x1) +#' θ1 <- list(p=1/2, β=2*μ, b=c(0,0)) +#' par1 <- o$run(θ1) #' o$f( o$linArgs(par0) ) #' o$f( o$linArgs(par1) ) #' @export @@ -67,9 +67,7 @@ setRefClass( li = "character", #link function X = "matrix", Y = "numeric", - M1 = "numeric", - M2 = "numeric", #M2 easier to process as a vector - M3 = "numeric", #same for M3 + Mhat = "numeric", #vector of empirical moments # Dimensions K = "integer", n = "integer", @@ -89,80 +87,90 @@ setRefClass( # Precompute empirical moments M <- computeMoments(optargs$X,optargs$Y) - M1 <<- as.double(M[[1]]) - M2 <<- as.double(M[[2]]) - M3 <<- as.double(M[[3]]) + M1 <- as.double(M[[1]]) + M2 <- as.double(M[[2]]) + M3 <- as.double(M[[3]]) + Mhat <<- matrix(c(M1,M2,M3), ncol=1) n <<- nrow(X) d <<- length(M1) W <<- diag(d+d^2+d^3) #initialize at W = Identity }, - expArgs = function(x) + expArgs = function(v) { - "Expand individual arguments from vector x" + "Expand individual arguments from vector v into a list" list( # p: dimension K-1, need to be completed - "p" = c(x[1:(K-1)], 1-sum(x[1:(K-1)])), - "β" = matrix(x[K:(K+d*K-1)], ncol=K), - "b" = x[(K+d*K):(K+(d+1)*K-1)]) + "p" = c(v[1:(K-1)], 1-sum(v[1:(K-1)])), + "β" = matrix(v[K:(K+d*K-1)], ncol=K), + "b" = v[(K+d*K):(K+(d+1)*K-1)]) }, - linArgs = function(o) + linArgs = function(L) { - " Linearize vectors+matrices into a vector x" + "Linearize vectors+matrices from list L into a vector" - c(o$p[1:(K-1)], as.double(o$β), o$b) + c(L$p[1:(K-1)], as.double(L$β), L$b) }, - getOmega = function(theta) + computeW = function(θ) { dim <- d + d^2 + d^3 - matrix( .C("Compute_Omega", - X=as.double(X), Y=as.double(Y), pn=as.integer(n), pd=as.integer(d), - p=as.double(theta$p), β=as.double(theta$β), b=as.double(theta$b), - W=as.double(W), PACKAGE="morpheus")$W, nrow=dim, ncol=dim) + W <<- solve( matrix( .C("Compute_Omega", + X=as.double(X), Y=as.double(Y), M=as.double(M(θ)), + pn=as.integer(n), pd=as.integer(d), + W=as.double(W), PACKAGE="morpheus")$W, nrow=dim, ncol=dim) ) + NULL #avoid returning W }, - f = function(theta) + M <- function(θ) { - "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)" + "Vector of moments, of size d+d^2+d^3" - p <- theta$p - β <- theta$β + p <- θ$p + β <- θ$β λ <- sqrt(colSums(β^2)) - b <- theta$b + b <- θ$b # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 β2 <- apply(β, 2, function(col) col %o% col) β3 <- apply(β, 2, function(col) col %o% col %o% col) - A <- matrix(c( - β %*% (p * .G(li,1,λ,b)) - M1, - β2 %*% (p * .G(li,2,λ,b)) - M2, - β3 %*% (p * .G(li,3,λ,b)) - M3), ncol=1) + matrix(c( + β %*% (p * .G(li,1,λ,b)), + β2 %*% (p * .G(li,2,λ,b)), + β3 %*% (p * .G(li,3,λ,b))), ncol=1) + }, + + f = function(θ) + { + "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)" + + A <- M(θ) - Mhat t(A) %*% W %*% A }, - grad_f = function(x) + grad_f = function(θ) { "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1" - # TODO: formula -2 t(grad M(theta)) . W . (Mhat - M(theta)) + -2 * t(grad_M(θ)) %*% getW(θ) %*% (Mhat - M(θ)) } - grad_M = function(theta) + grad_M = function(θ) { - # TODO: adapt code below for grad of d+d^2+d^3 vector of moments, - # instead of grad (sum(Mhat-M(theta)^2)) --> should be easier + "Gradient of the vector of moments, size (dim=)d+d^2+d^3 x K-1+K+d*K" - P <- expArgs(x) - p <- P$p - β <- P$β + L <- expArgs(θ) + p <- L$p + β <- L$β λ <- sqrt(colSums(β^2)) μ <- sweep(β, 2, λ, '/') - b <- P$b + b <- L$b + + res <- matrix(nrow=nrow(W), ncol=0) # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 β2 <- apply(β, 2, function(col) col %o% col) @@ -175,18 +183,13 @@ setRefClass( G4 = .G(li,4,λ,b) G5 = .G(li,5,λ,b) - # (Mi - hat_Mi)^2 ' == (Mi - hat_Mi)' 2(Mi - hat_Mi) = Mi' Fi - F1 = as.double( 2 * ( β %*% (p * G1) - M1 ) ) - F2 = as.double( 2 * ( β2 %*% (p * G2) - M2 ) ) - F3 = as.double( 2 * ( β3 %*% (p * G3) - M3 ) ) - + # Gradient on p: K-1 columns, dim rows km1 = 1:(K-1) - grad <- #gradient on p - t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ) %*% F1 + - t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ) %*% F2 + - t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ) %*% F3 + res <- cbind(res, rbind( + t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ), + t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ), + t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ))) - grad_β <- matrix(nrow=d, ncol=K) for (i in 1:d) { # i determines the derivated matrix dβ[2,3] @@ -213,46 +216,47 @@ setRefClass( dβ3_right[block,] <- dβ3_right[block,] + β2 dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*') - grad_β[i,] <- t(dβ) %*% F1 + t(dβ2) %*% F2 + t(dβ3) %*% F3 + res <- cbind(res, rbind(t(dβ), t(dβ2), t(dβ3))) } - grad <- c(grad, as.double(grad_β)) - grad = c(grad, #gradient on b - t( sweep(β, 2, p * G2, '*') ) %*% F1 + - t( sweep(β2, 2, p * G3, '*') ) %*% F2 + - t( sweep(β3, 2, p * G4, '*') ) %*% F3 ) + # Gradient on b + res <- cbind(res, rbind( + t( sweep(β, 2, p * G2, '*') ), + t( sweep(β2, 2, p * G3, '*') ), + t( sweep(β3, 2, p * G4, '*') ))) - grad + res }, - # TODO: rename x(0) into theta(0) --> θ - run = function(x0) + run = function(θ0) { - "Run optimization from x0 with solver..." - - if (!is.list(x0)) - stop("x0: list") - if (is.null(x0$β)) - stop("At least x0$β must be provided") - if (!is.matrix(x0$β) || any(is.na(x0$β)) || ncol(x0$β) != K) - stop("x0$β: matrix, no NA, ncol == K") - if (is.null(x0$p)) - x0$p = rep(1/K, K-1) - else if (length(x0$p) != K-1 || sum(x0$p) > 1) - stop("x0$p should contain positive integers and sum to < 1") + "Run optimization from θ0 with solver..." + + if (!is.list(θ0)) + stop("θ0: list") + if (is.null(θ0$β)) + stop("At least θ0$β must be provided") + if (!is.matrix(θ0$β) || any(is.na(θ0$β)) || ncol(θ0$β) != K) + stop("θ0$β: matrix, no NA, ncol == K") + if (is.null(θ0$p)) + θ0$p = rep(1/K, K-1) + else if (length(θ0$p) != K-1 || sum(θ0$p) > 1) + stop("θ0$p should contain positive integers and sum to < 1") # Next test = heuristic to detect missing b (when matrix is called "beta") - if (is.null(x0$b) || all(x0$b == x0$β)) - x0$b = rep(0, K) - else if (any(is.na(x0$b))) - stop("x0$b cannot have missing values") + if (is.null(θ0$b) || all(θ0$b == θ0$β)) + θ0$b = rep(0, K) + else if (any(is.na(θ0$b))) + stop("θ0$b cannot have missing values") - op_res = constrOptim( linArgs(x0), .self$f, .self$grad_f, + op_res = constrOptim( linArgs(θ0), .self$f, .self$grad_f, ui=cbind( rbind( rep(-1,K-1), diag(K-1) ), matrix(0, nrow=K, ncol=(d+1)*K) ), ci=c(-1,rep(0,K-1)) ) - # We get a first non-trivial estimation of W: getOmega(theta)^{-1} + # debug: + print(computeW(expArgs(op_res$par))) + # We get a first non-trivial estimation of W # TODO: loop, this redefine f, so that we can call constrOptim again... # Stopping condition? N iterations? Delta <= ε ? diff --git a/pkg/src/functions.c b/pkg/src/functions.c index 42bb134..41065bd 100644 --- a/pkg/src/functions.c +++ b/pkg/src/functions.c @@ -54,9 +54,17 @@ void Moments_M3(double* X, double* Y, int* pn, int* pd, double* M3) } } -void Compute_Omega(double* X, double* Y, int* pn, int* pd, double* W) +void Compute_Omega(double* X, double* Y, double* M, int* pn, int* pd, double* W) { + int n=*pn, d=*pd; + //double* W = (double*)calloc(d+d*d+d*d*d,sizeof(double)); + // TODO: formula 1/N sum( t(g(Zi,theta)) g(Zi,theta) ) - // = 1/N sum( t( (XiYi-...) - theta[i] ) ( ... ) ) + // = 1/N sum( t( (XiYi-...) - M[i] ) ( ... ) ) // --> similar to Moments_M2 and M3 above + for (int j=0; j< + for (int i=0; iout_${n}_${link}_${d}_${nstart} 2>&1 + done +done