From: Benjamin Auder Date: Tue, 3 Dec 2019 20:21:36 +0000 (+0100) Subject: Remove weights for now; planning generalization with matrix W X-Git-Url: https://git.auder.net/js/pieces/bundles/doc/%7B%7B%20asset%28%27mixstore/DESCRIPTION?a=commitdiff_plain;h=e92d9d9dad0780d1a7eec27220c31254c20ab60d;p=morpheus.git Remove weights for now; planning generalization with matrix W --- diff --git a/.gitignore b/.gitignore index 14fe774..d793e0b 100644 --- a/.gitignore +++ b/.gitignore @@ -17,6 +17,7 @@ NAMESPACE /vignettes/report.html /vignettes/report_cache/ /vignettes/report_files/ +/vignettes/*.zip #ignore R session files .Rhistory diff --git a/pkg/R/optimParams.R b/pkg/R/optimParams.R index 06d1684..f62e75a 100644 --- a/pkg/R/optimParams.R +++ b/pkg/R/optimParams.R @@ -57,14 +57,9 @@ optimParams = function(K, link=c("logit","probit"), optargs=list()) M <- computeMoments(optargs$X,optargs$Y) } - weights <- optargs$weights - if (is.null(weights)) - weights <- rep(1, 3) - # Build and return optimization algorithm object methods::new("OptimParams", "li"=link, "M1"=as.double(M[[1]]), - "M2"=as.double(M[[2]]), "M3"=as.double(M[[3]]), - "weights"=weights, "K"=as.integer(K)) + "M2"=as.double(M[[2]]), "M3"=as.double(M[[3]]), "K"=as.integer(K)) } # Encapsulated optimization for p (proportions), β and b (regression parameters) @@ -73,7 +68,6 @@ optimParams = function(K, link=c("logit","probit"), optargs=list()) # @field M1 Estimated first-order moment # @field M2 Estimated second-order moment (flattened) # @field M3 Estimated third-order moment (flattened) -# @field weights Vector of moments' weights # @field K Number of populations # @field d Number of dimensions # @@ -86,10 +80,11 @@ setRefClass( M1 = "numeric", #order-1 moment (vector size d) M2 = "numeric", #M2 easier to process as a vector M3 = "numeric", #M3 easier to process as a vector - weights = "numeric", #weights on moments # Dimensions K = "integer", - d = "integer" + d = "integer", + # Weights matrix (generalized least square) + W = "matrix" ), methods = list( @@ -105,6 +100,7 @@ setRefClass( } d <<- length(M1) + W <<- diag(d+d^2+d^3) #initialize at W = Identity }, expArgs = function(x) @@ -127,7 +123,7 @@ setRefClass( f = function(x) { - "Sum of squares (Mi - hat_Mi)^2 where Mi is obtained from formula" + "Product t(Mi - hat_Mi) W (Mi - hat_Mi) with Mi(theta)" P <- expArgs(x) p <- P$p @@ -140,9 +136,9 @@ setRefClass( β3 <- apply(β, 2, function(col) col %o% col %o% col) return( - weights[1] * sum( ( β %*% (p * .G(li,1,λ,b)) - M1 )^2 ) + - weights[2] * sum( ( β2 %*% (p * .G(li,2,λ,b)) - M2 )^2 ) + - weights[3] * sum( ( β3 %*% (p * .G(li,3,λ,b)) - M3 )^2 ) ) + sum( ( β %*% (p * .G(li,1,λ,b)) - M1 )^2 ) + + sum( ( β2 %*% (p * .G(li,2,λ,b)) - M2 )^2 ) + + sum( ( β3 %*% (p * .G(li,3,λ,b)) - M3 )^2 ) ) }, grad_f = function(x) @@ -174,9 +170,9 @@ setRefClass( km1 = 1:(K-1) grad <- #gradient on p - weights[1] * t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ) %*% F1 + - weights[2] * t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ) %*% F2 + - weights[3] * t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ) %*% F3 + t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ) %*% F1 + + t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ) %*% F2 + + t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ) %*% F3 grad_β <- matrix(nrow=d, ncol=K) for (i in 1:d) @@ -205,17 +201,14 @@ setRefClass( dβ3_right[block,] <- dβ3_right[block,] + β2 dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*') - grad_β[i,] <- - weights[1] * t(dβ) %*% F1 + - weights[2] * t(dβ2) %*% F2 + - weights[3] * t(dβ3) %*% F3 + grad_β[i,] <- t(dβ) %*% F1 + t(dβ2) %*% F2 + t(dβ3) %*% F3 } grad <- c(grad, as.double(grad_β)) grad = c(grad, #gradient on b - weights[1] * t( sweep(β, 2, p * G2, '*') ) %*% F1 + - weights[2] * t( sweep(β2, 2, p * G3, '*') ) %*% F2 + - weights[3] * t( sweep(β3, 2, p * G4, '*') ) %*% F3 ) + t( sweep(β, 2, p * G2, '*') ) %*% F1 + + t( sweep(β2, 2, p * G3, '*') ) %*% F2 + + t( sweep(β3, 2, p * G4, '*') ) %*% F3 ) grad },