From: Benjamin Goehry Date: Tue, 17 Jan 2017 16:47:20 +0000 (+0100) Subject: EMGLLF in R X-Git-Url: https://git.auder.net/js/pieces/DESCRIPTION?a=commitdiff_plain;h=83ed2c0a1924fe874d0d12f82ad46c42b6ae4e97;p=valse.git EMGLLF in R --- diff --git a/src/test/generate_test_data/helpers/EMGLLF.R b/src/test/generate_test_data/helpers/EMGLLF.R new file mode 100644 index 0000000..f108a38 --- /dev/null +++ b/src/test/generate_test_data/helpers/EMGLLF.R @@ -0,0 +1,167 @@ +EMGLLF = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau){ + #matrix dimensions + n = dim(X)[1] + p = dim[phiInit][1] + m = dim[phiInit][2] + k = dim[phiInit][3] + + #init outputs + phi = phiInit + rho = rhoInit + Pi = piInit + LLF = rep(0, maxi) + S = array(0, dim=c(p,m,k)) + + + gam = gamInit + Gram2 = array(0, dim=c(p,p,k)) + ps2 = array(0, dim=c(p,m,k)) + b = rep(0, k) + pen = matrix(0, maxi, k) + X2 = array(0, dim=c(n,p,k)) + Y2 = array(0, dim=c(p,m,k)) + dist = 0 + dist2 = 0 + ite = 1 + Pi2 = rep(0, k) + ps = matrix(0, m,k) + nY2 = matrix(0, m,k) + ps1 = array(0, dim=c(n,m,k)) + nY21 = array(0, dim=c(n,m,k)) + Gam = matrix(0, n,k) + EPS = 1E-15 + + while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau)))){ + Phi = phi + Rho = rho + PI = Pi + #calcul associé à Y et X + for(r in 1:k){ + for(mm in 1:m){ + Y2[,mm,r] = sqrt(gam[,r]) .* Y[,mm] + } + for(i in 1:n){ + X2[i,,r] = X[i,] .* sqrt(gam[i,r]) + } + for(mm in 1:m){ + ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) + } + for(j in 1:p){ + for(s in 1:p){ + Gram2[j,s,r] = tcrossprod(X2[,j,r], X2[,s,r]) + } + } + } + + ########## + #Etape M # + ########## + + #pour pi + for(r in 1:k){ + b[r] = sum(sum(abs(phi[,,r]))) + } + gam2 = sum(gam[1,]) #BIG DOUTE + a = sum(gam*t(log(Pi))) + + #tant que les props sont negatives + kk = 0 + pi2AllPositive = FALSE + while(pi2AllPositive == FALSE){ + pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi) + pi2AllPositive = TRUE + for(r in 1:k){ + if(pi2[r] < 0){ + pi2AllPositive = false; + break + } + } + kk = kk+1 + } + + #t[m]la plus grande valeur dans la grille O.1^k tel que ce soit + #décroissante ou constante + while((-1/n*a+lambda*((pi.^gamma)*b))<(-1/n*gam2*t(log(pi2))+lambda.*(pi2.^gamma)*b) && kk<1000){ + pi2 = pi+0.1^kk*(1/n*gam2-pi) + kk = kk+1 + } + t = 0.1^(kk) + pi = (pi+t*(pi2-pi)) / sum(pi+t*(pi2-pi)) + + #Pour phi et rho + for(r in 1:k){ + for(mm in 1:m){ + for(i in 1:n){ + ps1[i,mm,r] = Y2[i,mm,r] * dot(X2(i,:,r), phi(:,mm,r)) + nY21[i,mm,r] = (Y2[i,mm,r])^2 + } + ps[mm,r] = sum(ps1(:,mm,r)); + nY2[mm,r] = sum(nY21(:,mm,r)); + rho[mm,mm,r] = ((ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*(gam2[r])))/(2*nY2[mm,r])) + } + } + for(r in 1:k){ + for(j in 1:p){ + for(mm in 1:m){ + S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + dot(phi[1:j-1,mm,r],Gram2[j,1:j-1,r]) + dot(phi[j+1:p,mm,r],Gram2[j,j+1:p,r]) + if(abs(S(j,mm,r)) <= n*lambda*(pi(r)^gamma)) + phi[j,mm,r]=0 + else{ + if(S[j,mm,r]> n*lambda*(Pi[r]^gamma)) + phi[j,mm,r] = (n*lambda*(Pi[r]^gamma)-S[j,mm,r])/Gram2[j,j,r] + else + phi[j,mm,r] = -(n*lambda*(Pi[r]^gamma)+S[j,mm,r])/Gram2[j,j,r] + } + } + } + } + + ########## + #Etape E # + ########## + sumLogLLF2 = 0 + for(i in 1:n){ + #precompute dot products to numerically adjust their values + dotProducts = rep(0,k) + for(r in 1:k){ + dotProducts[r] = tcrossprod(Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r]) + } + shift = 0.5*min(dotProducts) + + #compute Gam(:,:) using shift determined above + sumLLF1 = 0.0; + for(r in 1:k){ + Gam[i,r] = Pi[r]*det(rho[,,r])*exp(-0.5*dotProducts[r] + shift) + sumLLF1 = sumLLF1 + Gam[i,r]/(2*pi)^(m/2) + } + sumLogLLF2 = sumLogLLF2 + log(sumLLF1) + sumGamI = sum(Gam[i,]) + if(sumGamI > EPS) + gam[i,] = Gam[i,] / sumGamI + else + gam[i,] = rep(0,k) + } + + + sumPen = 0 + for(r in 1:k){ + sumPen = sumPen + Pi[r].^gamma^b[r] + } + LLF[ite] = -(1/n)*sumLogLLF2 + lambda*sumPen + + if(ite == 1) + dist = LLF[ite] + else + dist = (LLF[ite]-LLF[ite-1])/(1+abs(LLF[ite])) + + Dist1=max(max(max((abs(phi-Phi))./(1+abs(phi))))) + Dist2=max(max(max((abs(rho-Rho))./(1+abs(rho))))) + Dist3=max(max((abs(Pi-PI))./(1+abs(PI)))) + dist2=max([Dist1,Dist2,Dist3]) + + ite=ite+1 + } + + Pi = transpose(Pi) + return(list(phi=phi, rho=rho, Pi=Pi, LLF=LLF, S=S)) +} \ No newline at end of file