From: Benjamin Auder Date: Mon, 9 Jan 2017 18:39:39 +0000 (+0100) Subject: work on main.R X-Git-Url: https://git.auder.net/js/img/current/vendor/normalize.css?a=commitdiff_plain;h=cea14f3a36d329311d08b6c723c0102400f9bb6f;p=epclust.git work on main.R --- diff --git a/code/draft_R_pkg/R/algorithms.R b/code/draft_R_pkg/R/algorithms.R index e27a235..eda05e5 100644 --- a/code/draft_R_pkg/R/algorithms.R +++ b/code/draft_R_pkg/R/algorithms.R @@ -1,10 +1,17 @@ -getCoeffs = function(series) +curvesToCoeffs = function(series) { #... return wavelets coeffs : compute in parallel ! + #TODO: always keep ID in first column +} + +coeffsToCurves = function(coeffs) +{ + #re-expand on wavelet basis } getClusters = function(data, K) { pam_output = pam(data, K) - return ( list(clusts=pam_output$clustering, medoids=pam_output$medoids) ) + return ( list( clusts=pam_output$clustering, medoids=pam_output$medoids, + ranks=pam_output$id.med ) ) } diff --git a/code/draft_R_pkg/R/main.R b/code/draft_R_pkg/R/main.R index 6dca708..bb7355b 100644 --- a/code/draft_R_pkg/R/main.R +++ b/code/draft_R_pkg/R/main.R @@ -3,7 +3,7 @@ #' @title Cluster power curves with PAM in parallel #' #' @description Groups electricity power curves (or any series of similar nature) by applying PAM -#' algorithm in parallel to chunks of size \code{nbSeriesPerChunk} +#' algorithm in parallel to chunks of size \code{nb_series_per_chunk} #' #' @param data Access to the data, which can be of one of the three following types: #' \itemize{ @@ -13,7 +13,8 @@ #' (start) and number of curves (n); see example in package vignette. #' } #' @param K Number of clusters -#' @param nbSeriesPerChunk Number of series in each group +#' @param nb_series_per_chunk (Maximum) number of series in each group +#' @param min_series_per_chunk Minimum number of series in each group #' @param writeTmp Function to write temporary wavelets coefficients (+ identifiers); #' see defaults in defaults.R #' @param readTmp Function to read temporary wavelets coefficients (see defaults.R) @@ -22,8 +23,8 @@ #' @param ncores number of parallel processes; if NULL, use parallel::detectCores() #' #' @return A data.frame of the final medoids curves (identifiers + values) -epclust = function(data, K, nbSeriesPerChunk, writeTmp=ref_writeTmp, readTmp=ref_readTmp, - WER="end", ncores=NULL) +epclust = function(data, K, nb_series_per_chunk, min_series_per_chunk=10*K, + writeTmp=defaultWriteTmp, readTmp=defaultReadTmp, WER="end", ncores=NULL) { #TODO: setRefClass(...) to avoid copy data: #http://stackoverflow.com/questions/2603184/r-pass-by-reference @@ -34,18 +35,18 @@ epclust = function(data, K, nbSeriesPerChunk, writeTmp=ref_writeTmp, readTmp=ref { if (is.character(data)) { - dataCon = file(data, open="r") + data_con = file(data, open="r") } else if (!isOpen(data)) { open(data) - dataCon = data + data_con = data } }, error="data should be a data.frame, a function or a valid connection") if (!is.integer(K) || K < 2) stop("K should be an integer greater or equal to 2") - if (!is.integer(nbSeriesPerChunk) || nbSeriesPerChunk < K) - stop("nbSeriesPerChunk should be an integer greater or equal to K") + if (!is.integer(nb_series_per_chunk) || nb_series_per_chunk < K) + stop("nb_series_per_chunk should be an integer greater or equal to K") if (!is.function(writeTmp) || !is.function(readTmp)) stop("read/writeTmp should be functional (see defaults.R)") if (WER!="end" && WER!="mix") @@ -54,72 +55,86 @@ epclust = function(data, K, nbSeriesPerChunk, writeTmp=ref_writeTmp, readTmp=ref #1) acquire data (process curves, get as coeffs) index = 1 - nbCurves = 0 + nb_curves = 0 repeat { + coeffs_chunk = NULL if (is.data.frame(data)) { #full data matrix if (index < nrow(data)) { - writeTmp( getCoeffs( data[index:(min(index+nbSeriesPerChunk-1,nrow(data))),] ) ) - } else - { - break + coeffs_chunk = curvesToCoeffs( + data[index:(min(index+nb_series_per_chunk-1,nrow(data))),]) } } else if (is.function(data)) { #custom user function to retrieve next n curves, probably to read from DB - coeffs_chunk = getCoeffs( data(index, nbSeriesPerChunk) ) - if (!is.null(coeffs_chunk)) - { - writeTmp(coeffs_chunk) - } else - { - break - } + coeffs_chunk = curvesToCoeffs( data(index, nb_series_per_chunk) ) } else { #incremental connection #TODO: find a better way to parse than using a temp file - ascii_lines = readLines(dataCon, nbSeriesPerChunk) + ascii_lines = readLines(data_con, nb_series_per_chunk) if (length(ascii_lines > 0)) { - seriesChunkFile = ".tmp/seriesChunk" - writeLines(ascii_lines, seriesChunkFile) - writeTmp( getCoeffs( read.csv(seriesChunkFile) ) ) - } else - { - break + series_chunk_file = ".tmp/series_chunk" + writeLines(ascii_lines, series_chunk_file) + coeffs_chunk = curvesToCoeffs( read.csv(series_chunk_file) ) } } - index = index + nbSeriesPerChunk + if (is.null(coeffs_chunk)) + break + writeTmp(coeffs_chunk) + nb_curves = nb_curves + nrow(coeffs_chunk) + index = index + nb_series_per_chunk } - if (exists(dataCon)) - close(dataCon) + if (exists(data_con)) + close(data_con) + if (nb_curves < min_series_per_chunk) + stop("Not enough data: less rows than min_series_per_chunk!") + #2) process coeffs (by nb_series_per_chunk) and cluster them in parallel library(parallel) ncores = ifelse(is.integer(ncores), ncores, parallel::detectCores()) cl = parallel::makeCluster(ncores) parallel::clusterExport(cl=cl, varlist=c("X", "Y", "K", "p"), envir=environment()) library(cluster) - li = parallel::parLapply(cl, 1:B, ) - - #2) process coeffs (by nbSeriesPerChunk) and cluster them in parallel #TODO: be careful of writing to a new temp file, then flush initial one, then re-use it... repeat { - completed = rep(FALSE, ............) - #while there is jobs to do (i.e. size of tmp "file" is greater than nbSeriesPerChunk), - #A) determine which tasks which processor will do (OK) - #B) send each (sets of) tasks in parallel + #while there is jobs to do (i.e. size of tmp "file" is greater than nb_series_per_chunk) + nb_workers = nb_curves %/% nb_series_per_chunk + indices = list() + #incides[[i]] == (start_index,number_of_elements) + for (i in 1:nb_workers) + indices[[i]] = c(nb_series_per_chunk*(i-1)+1, nb_series_per_chunk) + remainder = nb_curves %% nb_series_per_chunk + if (remainder >= min_series_per_chunk) + { + nb_workers = nb_workers + 1 + indices[[nb_workers]] = c(nb_curves-remainder+1, nb_curves) + } else if (remainder > 0) + { + #spread the load among other workers + + } + li = parallel::parLapply(cl, indices, processChunk, WER=="mix") #C) flush tmp file (current parallel processes will write in it) - #always check "complete" flag (array, as I did in MPI) to know if "slaves" finished } -pam(x, k) parallel::stopCluster(cl) #3) readTmp last results, apply PAM on it, and return medoids + identifiers + final_coeffs = readTmp(1, nb_series_per_chunk) + if (nrow(final_coeffs) == K) + { + return ( list( medoids=coeffsToCurves(final_coeffs[,2:ncol(final_coeffs)]), + ids=final_coeffs[,1] ) ) + } + pam_output = getClusters(as.matrix(final_coeffs[,2:ncol(final_coeffs)]), K) + medoids = coeffsToCurves(pam_output$medoids) + ids = final_coeffs[,1] [pam_output$ranks] + return (list(medoids=medoids, ids=ids)) #4) apply stage 2 (in parallel ? inside task 2) ?) if (WER == "end") @@ -127,3 +142,10 @@ pam(x, k) #from center curves, apply stage 2... } } + +processChunk = function(indice, WER) +{ + #1) retrieve data + #2) cluster + #3) WER (optional) +}