From: Benjamin Auder <benjamin.auder@somewhere>
Date: Sat, 14 Jan 2017 02:53:34 +0000 (+0100)
Subject: reorganize test folder: tests generation with MATLAB almost OK (but suboptimal method)
X-Git-Url: https://git.auder.net/js/doc/html/index.html?a=commitdiff_plain;h=0f51ccae09947bf5e13657eda3bb4b83d0734621;p=valse.git

reorganize test folder: tests generation with MATLAB almost OK (but suboptimal method)
---

diff --git a/man/TODO b/man/TODO
deleted file mode 100644
index e69de29..0000000
diff --git a/src/.gitignore b/src/.gitignore
index a8b0573..bdfbcfb 100644
--- a/src/.gitignore
+++ b/src/.gitignore
@@ -1,6 +1,4 @@
 #ignore object files, library and test executables
 *.o
 *.so
-test.*
-!test.*.c
 vgcore.*
diff --git a/src/test/.gitignore b/src/test/.gitignore
new file mode 100644
index 0000000..05354ad
--- /dev/null
+++ b/src/test/.gitignore
@@ -0,0 +1,3 @@
+test.*
+!test.*.c
+/data/
diff --git a/src/test/OLD_TEST_MATLAB/TODO b/src/test/OLD_TEST_MATLAB/TODO
deleted file mode 100644
index b3dcd6a..0000000
--- a/src/test/OLD_TEST_MATLAB/TODO
+++ /dev/null
@@ -1,4 +0,0 @@
-1) transformer les .m en .R : toute la partie "R-only" du package "valse"
-   est utilisable si besoin
-2) sauvegarder les résultats + entrées/sorties à partir du code R uniquement,
-   dans le dossier src/test/data (** sous forme de vecteurs, sep=" " **)
diff --git a/src/test/OLD_TEST_MATLAB/checkOutput.m b/src/test/OLD_TEST_MATLAB/checkOutput.m
deleted file mode 100644
index c56ed0b..0000000
--- a/src/test/OLD_TEST_MATLAB/checkOutput.m
+++ /dev/null
@@ -1,11 +0,0 @@
-function[]=checkOutput(varName, matrix, refMatrix, tol)
-
-	fprintf('Checking %s\n',varName);
-	maxError = max(max(max(max(abs(matrix - refMatrix)))));
-	if maxError >= tol
-		fprintf('    Inaccuracy: max(abs(error)) = %g >= %g\n',maxError,tol);
-	else
-		fprintf('    OK\n');
-	end
-
-end
diff --git a/src/test/OLD_TEST_MATLAB/testConstructionModelesLassoMLE.m b/src/test/OLD_TEST_MATLAB/testConstructionModelesLassoMLE.m
deleted file mode 100644
index 27c1208..0000000
--- a/src/test/OLD_TEST_MATLAB/testConstructionModelesLassoMLE.m
+++ /dev/null
@@ -1,46 +0,0 @@
-function[] = testConstructionModelesLassoMLE()
-
-	testFolder = 'data/';
-	delimiter = '\n';
-
-	%get dimensions
-	dimensions = dlmread(strcat(testFolder,'dimensions'), delimiter);
-	n = dimensions(1);
-	p = dimensions(2);
-	m = dimensions(3);
-	k = dimensions(4);
-	L = dimensions(5);
-
-	%get all input arrays
-	phiInit = reshape(dlmread(strcat(testFolder,'phiInit'), delimiter), p, m, k);
-	rhoInit = reshape(dlmread(strcat(testFolder,'rhoInit'), delimiter), m, m, k);
-	piInit = transpose(dlmread(strcat(testFolder,'piInit'), delimiter));
-	gamInit = reshape(dlmread(strcat(testFolder,'gamInit'), delimiter), n, k);
-	mini = int64(dlmread(strcat(testFolder,'mini'), delimiter));
-	maxi = int64(dlmread(strcat(testFolder,'maxi'), delimiter));
-	gamma = dlmread(strcat(testFolder,'gamma'), delimiter);
-	glambda = dlmread(strcat(testFolder,'glambda'), delimiter);
-	X = reshape(dlmread(strcat(testFolder,'X'), delimiter), n, p);
-	Y = reshape(dlmread(strcat(testFolder,'Y'), delimiter), n, m);
-	seuil = dlmread(strcat(testFolder,'seuil'), delimiter);
-	tau = dlmread(strcat(testFolder,'tau'), delimiter);
-	A1 = int64(reshape(dlmread(strcat(testFolder,'A1'), delimiter), p, m+1, L));
-	A2 = int64(reshape(dlmread(strcat(testFolder,'A2'), delimiter), p, m+1, L));
-
-	%run constructionModelesLassoMLE.m
-	[phi,rho,pi,lvraisemblance] = constructionModelesLassoMLE(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau,A1,A2);
-
-	%get all stored outputs
-	ref_phi = reshape(dlmread(strcat(testFolder,'phi'), delimiter), p, m, k, L);
-	ref_rho = reshape(dlmread(strcat(testFolder,'rho'), delimiter), m, m, k, L);
-	ref_pi = reshape(dlmread(strcat(testFolder,'pi'), delimiter), k, L);
-	ref_lvraisemblance = reshape(dlmread(strcat(testFolder,'lvraisemblance'), delimiter), L, 2);
-
-	%check that output correspond to stored output
-	tol = 1e-5;
-	checkOutput('phi',phi,ref_phi,tol);
-	checkOutput('rho',rho,ref_rho,tol);
-	checkOutput('pi',pi,ref_pi,tol);
-	checkOutput('lvraisemblance',lvraisemblance,ref_lvraisemblance,tol);
-
-end
diff --git a/src/test/OLD_TEST_MATLAB/testEMGLLF.m b/src/test/OLD_TEST_MATLAB/testEMGLLF.m
deleted file mode 100644
index 0dd9db8..0000000
--- a/src/test/OLD_TEST_MATLAB/testEMGLLF.m
+++ /dev/null
@@ -1,44 +0,0 @@
-function[] = testEMGLLF()
-
-	testFolder = 'data/';
-	delimiter = '\n';
-
-	%get dimensions
-	dimensions = dlmread(strcat(testFolder,'dimensions'), delimiter);
-	n = dimensions(1);
-	p = dimensions(2);
-	m = dimensions(3);
-	k = dimensions(4);
-
-	%get all input arrays
-	phiInit = reshape(dlmread(strcat(testFolder,'phiInit'), delimiter), p, m, k);
-	rhoInit = reshape(dlmread(strcat(testFolder,'rhoInit'), delimiter), m, m, k);
-	piInit = transpose(dlmread(strcat(testFolder,'piInit'), delimiter));
-	gamInit = reshape(dlmread(strcat(testFolder,'gamInit'), delimiter), n, k);
-	mini = int64(dlmread(strcat(testFolder,'mini'), delimiter));
-	maxi = int64(dlmread(strcat(testFolder,'maxi'), delimiter));
-	gamma = dlmread(strcat(testFolder,'gamma'), delimiter);
-	lambda = dlmread(strcat(testFolder,'lambda'), delimiter);
-	X = reshape(dlmread(strcat(testFolder,'X'), delimiter), n, p);
-	Y = reshape(dlmread(strcat(testFolder,'Y'), delimiter), n, m);
-	tau = dlmread(strcat(testFolder,'tau'), delimiter);
-
-	%run EMGLLF.m
-	[phi,rho,pi,LLF,S] = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau);
-
-	%get all stored outputs
-	ref_phi = reshape(dlmread(strcat(testFolder,'phi'), delimiter), p, m, k);
-	ref_rho = reshape(dlmread(strcat(testFolder,'rho'), delimiter), m, m, k);
-	ref_pi = dlmread(strcat(testFolder,'pi'), delimiter);
-	ref_LLF = dlmread(strcat(testFolder,'LLF'), delimiter);
-	ref_S = reshape(dlmread(strcat(testFolder,'S'), delimiter), p, m, k);
-
-	%check that output correspond to stored output
-	tol = 1e-5;
-	checkOutput('phi',phi,ref_phi,tol);
-	checkOutput('rho',rho,ref_rho,tol);
-	checkOutput('pi',pi,ref_pi,tol);
-	checkOutput('LLF',LLF,ref_LLF,tol);
-	checkOutput('S',S,ref_S,tol);
-
-end
diff --git a/src/test/OLD_TEST_MATLAB/testSelectiontotale.m b/src/test/OLD_TEST_MATLAB/testSelectiontotale.m
deleted file mode 100644
index 996017f..0000000
--- a/src/test/OLD_TEST_MATLAB/testSelectiontotale.m
+++ /dev/null
@@ -1,44 +0,0 @@
-function[] = testSelectiontotale()
-
-	testFolder = 'data/';
-	delimiter = '\n';
-
-	%get dimensions
-	dimensions = dlmread(strcat(testFolder,'dimensions'), delimiter);
-	n = dimensions(1);
-	p = dimensions(2);
-	m = dimensions(3);
-	k = dimensions(4);
-	L = dimensions(5);
-
-	%get all input arrays
-	phiInit = reshape(dlmread(strcat(testFolder,'phiInit'), delimiter), p, m, k);
-	rhoInit = reshape(dlmread(strcat(testFolder,'rhoInit'), delimiter), m, m, k);
-	piInit = transpose(dlmread(strcat(testFolder,'piInit'), delimiter));
-	gamInit = reshape(dlmread(strcat(testFolder,'gamInit'), delimiter), n, k);
-	mini = int64(dlmread(strcat(testFolder,'mini'), delimiter));
-	maxi = int64(dlmread(strcat(testFolder,'maxi'), delimiter));
-	gamma = dlmread(strcat(testFolder,'gamma'), delimiter);
-	glambda = dlmread(strcat(testFolder,'glambda'), delimiter);
-	X = reshape(dlmread(strcat(testFolder,'X'), delimiter), n, p);
-	Y = reshape(dlmread(strcat(testFolder,'Y'), delimiter), n, m);
-	seuil = dlmread(strcat(testFolder,'seuil'), delimiter);
-	tau = dlmread(strcat(testFolder,'tau'), delimiter);
-
-	%run constructionModelesLassoMLE.m
-	[A1,A2,Rho,Pi] = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau);
-
-	%get all stored outputs
-	ref_A1 = int64(reshape(dlmread(strcat(testFolder,'A1'), delimiter), p, m+1, L));
-	ref_A2 = int64(reshape(dlmread(strcat(testFolder,'A2'), delimiter), p, m+1, L));
-	ref_Rho = reshape(dlmread(strcat(testFolder,'Rho'), delimiter), m, m, k, L);
-	ref_Pi = reshape(dlmread(strcat(testFolder,'Pi'), delimiter), k, L);
-
-	%check that output correspond to stored output
-	tol = 1e-5;
-	checkOutput('A1',A1,ref_A1,tol);
-	checkOutput('A2',A2,ref_A2,tol);
-	checkOutput('Rho',Rho,ref_Rho,tol);
-	checkOutput('Pi',Pi,ref_Pi,tol);
-
-end
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/EMGLLF.m b/src/test/generate_test_data/MATLAB_test_helpers/EMGLLF.m
new file mode 100644
index 0000000..618ffba
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/EMGLLF.m
@@ -0,0 +1,174 @@
+function[phi,rho,pi,LLF,S] = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau)
+
+	%Get matrices dimensions
+	PI = 4.0 * atan(1.0);
+	n = size(X, 1);
+	[p,m,k] = size(phiInit);
+
+	%Initialize outputs
+	phi = phiInit;
+	rho = rhoInit;
+	pi = piInit;
+	LLF = zeros(maxi,1);
+	S = zeros(p,m,k);
+
+	%Other local variables
+	%NOTE: variables order is always n,p,m,k
+	gam = gamInit;
+	Gram2 = zeros(p,p,k);
+	ps2 = zeros(p,m,k);
+	b = zeros(k,1);
+	pen = zeros(maxi,k);
+	X2 = zeros(n,p,k);
+	Y2 = zeros(n,m,k);
+	dist = 0;
+	dist2 = 0;
+	ite = 1;
+	pi2 = zeros(k,1);
+	ps = zeros(m,k);
+	nY2 = zeros(m,k);
+	ps1 = zeros(n,m,k);
+	nY21 = zeros(n,m,k);
+	Gam = zeros(n,k);
+	EPS = 1e-15;
+
+	while ite<=mini || (ite<=maxi && (dist>=tau || dist2>=sqrt(tau)))
+
+		Phi = phi;
+		Rho = rho;
+		Pi = pi;
+
+		%Calculs associés à Y et X
+		for r=1:k
+			for mm=1:m
+				Y2(:,mm,r) = sqrt(gam(:,r)) .* Y(:,mm);
+			end
+			for i=1:n
+				X2(i,:,r) = X(i,:) .* sqrt(gam(i,r));
+			end
+			for mm=1:m
+				ps2(:,mm,r) = transpose(X2(:,:,r)) * Y2(:,mm,r);
+			end
+			for j=1:p
+				for s=1:p
+					Gram2(j,s,r) = dot(X2(:,j,r), X2(:,s,r));
+				end
+			end
+		end
+
+		%%%%%%%%%%
+		%Etape M %
+		%%%%%%%%%%
+
+		%Pour pi
+		for r=1:k
+			b(r) = sum(sum(abs(phi(:,:,r))));
+		end
+		gam2 = sum(gam,1);
+		a = sum(gam*transpose(log(pi)));
+
+		%tant que les proportions sont negatives
+		kk = 0;
+		pi2AllPositive = false;
+		while ~pi2AllPositive
+			pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi);
+			pi2AllPositive = true;
+			for r=1:k
+				if pi2(r) < 0
+					pi2AllPositive = false;
+					break;
+				end
+			end
+			kk = kk+1;
+		end
+
+		%t(m) la plus grande valeur dans la grille O.1^k tel que ce soit
+		%décroissante ou constante
+		while (-1/n*a+lambda*((pi.^gamma)*b))<(-1/n*gam2*transpose(log(pi2))+lambda.*(pi2.^gamma)*b) && kk<1000
+			pi2 = pi+0.1^kk*(1/n*gam2-pi);
+			kk = kk+1;
+		end
+		t = 0.1^(kk);
+		pi = (pi+t*(pi2-pi)) / sum(pi+t*(pi2-pi));
+
+		%Pour phi et rho
+		for r=1:k
+			for mm=1:m
+				for i=1:n
+					ps1(i,mm,r) = Y2(i,mm,r) * dot(X2(i,:,r), phi(:,mm,r));
+					nY21(i,mm,r) = (Y2(i,mm,r))^2;
+				end
+				ps(mm,r) = sum(ps1(:,mm,r));
+				nY2(mm,r) = sum(nY21(:,mm,r));
+				rho(mm,mm,r) = ((ps(mm,r)+sqrt(ps(mm,r)^2+4*nY2(mm,r)*(gam2(r))))/(2*nY2(mm,r)));
+			end
+		end
+		for r=1:k
+			for j=1:p
+				for mm=1:m
+					S(j,mm,r) = -rho(mm,mm,r)*ps2(j,mm,r) + dot(phi(1:j-1,mm,r),Gram2(j,1:j-1,r)')...
+						+ dot(phi(j+1:p,mm,r),Gram2(j,j+1:p,r)');
+					if abs(S(j,mm,r)) <= n*lambda*(pi(r)^gamma)
+						phi(j,mm,r)=0;
+					else
+						if S(j,mm,r)> n*lambda*(pi(r)^gamma)
+							phi(j,mm,r)=(n*lambda*(pi(r)^gamma)-S(j,mm,r))/Gram2(j,j,r);
+						else
+							phi(j,mm,r)=-(n*lambda*(pi(r)^gamma)+S(j,mm,r))/Gram2(j,j,r);
+						end
+					end
+				end
+			end
+		end
+
+		%%%%%%%%%%
+		%Etape E %
+		%%%%%%%%%%
+
+		sumLogLLF2 = 0.0;
+		for i=1:n
+			%precompute dot products to numerically adjust their values
+			dotProducts = zeros(k,1);
+			for r=1:k
+				dotProducts(r)= (Y(i,:)*rho(:,:,r)-X(i,:)*phi(:,:,r)) * transpose(Y(i,:)*rho(:,:,r)-X(i,:)*phi(:,:,r));
+			end
+			shift = 0.5*min(dotProducts);
+
+			%compute Gam(:,:) using shift determined above
+			sumLLF1 = 0.0;
+			for r=1:k
+				Gam(i,r) = pi(r)*det(rho(:,:,r))*exp(-0.5*dotProducts(r) + shift);
+				sumLLF1 = sumLLF1 + Gam(i,r)/(2*PI)^(m/2);
+			end
+			sumLogLLF2 = sumLogLLF2 + log(sumLLF1);
+			sumGamI = sum(Gam(i,:));
+			if sumGamI > EPS
+				gam(i,:) = Gam(i,:) / sumGamI;
+			else
+				gam(i,:) = zeros(k,1);
+			end
+		end
+
+		sumPen = 0.0;
+		for r=1:k
+			sumPen = sumPen + pi(r).^gamma .* b(r);
+		end
+		LLF(ite) = -(1/n)*sumLogLLF2 + lambda*sumPen;
+
+		if ite == 1
+			dist = LLF(ite);
+		else
+			dist = (LLF(ite)-LLF(ite-1))/(1+abs(LLF(ite)));
+		end
+
+		Dist1=max(max(max((abs(phi-Phi))./(1+abs(phi)))));
+		Dist2=max(max(max((abs(rho-Rho))./(1+abs(rho)))));
+		Dist3=max(max((abs(pi-Pi))./(1+abs(Pi))));
+		dist2=max([Dist1,Dist2,Dist3]);
+
+		ite=ite+1;
+	end
+
+	pi = transpose(pi);
+
+end
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/EMGrank.m b/src/test/generate_test_data/MATLAB_test_helpers/EMGrank.m
new file mode 100644
index 0000000..76074b7
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/EMGrank.m
@@ -0,0 +1,69 @@
+function[phi,LLF] = EMGrank(Pi,Rho,mini,maxi,X,Y,tau,rank)
+
+	% get matrix sizes
+	[~,m,k] = size(Rho);
+	[n,p] = size(X);
+
+	% allocate output matrices
+	phi = zeros(p,m,k);
+	Z = ones(n,1,'int64');
+	LLF = 0.0;
+
+	% local variables
+	Phi = zeros(p,m,k);
+	deltaPhi = 0.0;
+	deltaPhi = [];
+	sumDeltaPhi = 0.0;
+	deltaPhiBufferSize = 20;
+
+	%main loop (at least mini iterations)
+	ite = int64(1);
+	while ite<=mini || (ite<=maxi && sumDeltaPhi>tau)
+
+		%M step: Mise à jour de Beta (et donc phi)
+		for r=1:k
+			if (sum(Z==r) == 0)
+				continue;
+			end
+			%U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr
+			[U,S,V] = svd(pinv(transpose(X(Z==r,:))*X(Z==r,:))*transpose(X(Z==r,:))*Y(Z==r,:));
+			%Set m-rank(r) singular values to zero, and recompose
+			%best rank(r) approximation of the initial product
+			S(rank(r)+1:end,:) = 0;
+			phi(:,:,r) = U * S * transpose(V) * Rho(:,:,r);
+		end
+
+		%Etape E et calcul de LLF
+		sumLogLLF2 = 0.0;
+		for i=1:n
+			sumLLF1 = 0.0;
+			maxLogGamIR = -Inf;
+			for r=1:k
+				dotProduct = (Y(i,:)*Rho(:,:,r)-X(i,:)*phi(:,:,r)) * transpose(Y(i,:)*Rho(:,:,r)-X(i,:)*phi(:,:,r));
+				logGamIR = log(Pi(r)) + log(det(Rho(:,:,r))) - 0.5*dotProduct;
+				%Z(i) = index of max (gam(i,:))
+				if logGamIR > maxLogGamIR
+					Z(i) = r;
+					maxLogGamIR = logGamIR;
+				end
+				sumLLF1 = sumLLF1 + exp(logGamIR) / (2*pi)^(m/2);
+			end
+			sumLogLLF2 = sumLogLLF2 + log(sumLLF1);
+		end
+
+		LLF = -1/n * sumLogLLF2;
+
+		% update distance parameter to check algorithm convergence (delta(phi, Phi))
+		deltaPhi = [ deltaPhi, max(max(max((abs(phi-Phi))./(1+abs(phi))))) ];
+		if length(deltaPhi) > deltaPhiBufferSize
+			deltaPhi = deltaPhi(2:length(deltaPhi));
+		end
+		sumDeltaPhi = sum(abs(deltaPhi));
+
+		% update other local variables
+		Phi = phi;
+		ite = ite+1;
+
+	end
+
+end
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/Octave.m b/src/test/generate_test_data/MATLAB_test_helpers/Octave.m
new file mode 100644
index 0000000..8f105d2
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/Octave.m
@@ -0,0 +1,5 @@
+% Run this file if using Octave
+if exist('OCTAVE_VERSION', 'builtin') ~= 0
+	pkg load statistics %for random()
+	more off %to prevent bufferizing output
+end
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/README b/src/test/generate_test_data/MATLAB_test_helpers/README
new file mode 100644
index 0000000..e94c0a0
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/README
@@ -0,0 +1 @@
+Subset of select/ project: only files required to generate tests outputs
diff --git a/src/test/OLD_TEST_MATLAB/basicInitParameters.m b/src/test/generate_test_data/MATLAB_test_helpers/basicInitParameters.m
similarity index 100%
rename from src/test/OLD_TEST_MATLAB/basicInitParameters.m
rename to src/test/generate_test_data/MATLAB_test_helpers/basicInitParameters.m
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoMLE.m b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoMLE.m
new file mode 100644
index 0000000..5b7c65e
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoMLE.m
@@ -0,0 +1,58 @@
+function[phi,rho,pi,lvraisemblance] = constructionModelesLassoMLE(...
+	phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau,A1,A2)
+
+	PI = 4.0 * atan(1.0);
+
+	%get matrix sizes
+	n = size(X, 1);
+	[p,m,k] = size(phiInit);
+	L = length(glambda);
+
+	%output parameters
+	phi = zeros(p,m,k,L);
+	rho = zeros(m,m,k,L);
+	pi = zeros(k,L);
+	lvraisemblance = zeros(L,2);
+
+	for lambdaIndex=1:L
+		% Procedure Lasso-MLE
+		a = A1(:,1,lambdaIndex);
+		a(a==0) = [];
+		if length(a) == 0
+			continue;
+		end
+		[phiLambda,rhoLambda,piLambda,~,~] = EMGLLF(...
+			phiInit(a,:,:),rhoInit,piInit,gamInit,mini,maxi,gamma,0,X(:,a),Y,tau);
+
+		for j=1:length(a)
+			phi(a(j),:,:,lambdaIndex) = phiLambda(j,:,:);
+		end
+		rho(:,:,:,lambdaIndex) = rhoLambda;
+		pi(:,lambdaIndex) = piLambda;
+
+		dimension = 0;
+		for j=1:p
+			b = A2(j,2:end,lambdaIndex);
+			b(b==0) = [];
+			if length(b) > 0
+				phi(A2(j,1,lambdaIndex),b,:,lambdaIndex) = 0.0;
+			end
+			c = A1(j,2:end,lambdaIndex);
+			c(c==0) = [];
+			dimension = dimension + length(c);
+		end
+
+		%on veut calculer l'EMV avec toutes nos estimations
+		densite = zeros(n,L);
+		for i=1:n
+			for r=1:k
+				delta = Y(i,:)*rho(:,:,r,lambdaIndex) - (X(i,a)*(phi(a,:,r,lambdaIndex)));
+				densite(i,lambdaIndex) = densite(i,lambdaIndex) +...
+					pi(r,lambdaIndex)*det(rho(:,:,r,lambdaIndex))/(sqrt(2*PI))^m*exp(-dot(delta,delta)/2.0);
+			end
+		end
+		lvraisemblance(lambdaIndex,1) = sum(log(densite(:,lambdaIndex)));
+		lvraisemblance(lambdaIndex,2) = (dimension+m+1)*k-1;
+	end
+
+end
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoRank.m b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoRank.m
new file mode 100644
index 0000000..415ab12
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/constructionModelesLassoRank.m
@@ -0,0 +1,40 @@
+function[phi,lvraisemblance] = constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,tau,A1,rangmin,rangmax)
+
+	PI = 4.0 * atan(1.0);
+
+	%get matrix sizes
+	[n,p] = size(X);
+	[~,m,k,~] = size(Rho);
+	L = size(A1, 2); %A1 est p x m+1 x L ou p x L ?!
+
+	%On cherche les rangs possiblement intéressants
+	deltaRank = rangmax - rangmin + 1;
+	Size = deltaRank^k;
+	Rank = zeros(Size,k,'int64');
+	for r=1:k
+		%On veut le tableau de toutes les combinaisons de rangs possibles
+		%Dans la première colonne : on répète (rangmax-rangmin)^(k-1) chaque chiffre : ca remplit la colonne
+		%Dans la deuxieme : on répète (rangmax-rangmin)^(k-2) chaque chiffre, et on fait ca (rangmax-rangmin)^2 fois
+		%...
+		%Dans la dernière, on répète chaque chiffre une fois, et on fait ca (rangmin-rangmax)^(k-1) fois.
+		Rank(:,r) = rangmin + reshape(repmat(0:(deltaRank-1), deltaRank^(k-r), deltaRank^(r-1)), Size, 1);
+	end
+
+	%output parameters
+	phi = zeros(p,m,k,L*Size);
+	lvraisemblance = zeros(L*Size,2);
+	for lambdaIndex=1:L
+		%On ne garde que les colonnes actives
+		%active sera l'ensemble des variables informatives
+		active = A1(:,lambdaIndex);
+		active(active==0) = [];
+		if length(active) > 0
+			for j=1:Size
+				[phiLambda,LLF] = EMGrank(Pi(:,lambdaIndex),Rho(:,:,:,lambdaIndex),mini,maxi,X(:,active),Y,tau,Rank(j,:));
+				lvraisemblance((lambdaIndex-1)*Size+j,:) = [LLF, sum(Rank(j,:) .* (length(active)-Rank(j,:)+m))];
+				phi(active,:,:,(lambdaIndex-1)*Size+j) = phiLambda;
+			end
+		end
+	end
+
+end
diff --git a/src/test/OLD_TEST_MATLAB/covariance.m b/src/test/generate_test_data/MATLAB_test_helpers/covariance.m
similarity index 100%
rename from src/test/OLD_TEST_MATLAB/covariance.m
rename to src/test/generate_test_data/MATLAB_test_helpers/covariance.m
diff --git a/src/test/OLD_TEST_MATLAB/generateIO.m b/src/test/generate_test_data/MATLAB_test_helpers/generateIO.m
similarity index 100%
rename from src/test/OLD_TEST_MATLAB/generateIO.m
rename to src/test/generate_test_data/MATLAB_test_helpers/generateIO.m
diff --git a/src/test/OLD_TEST_MATLAB/generateIOdefault.m b/src/test/generate_test_data/MATLAB_test_helpers/generateIOdefault.m
similarity index 100%
rename from src/test/OLD_TEST_MATLAB/generateIOdefault.m
rename to src/test/generate_test_data/MATLAB_test_helpers/generateIOdefault.m
diff --git a/src/test/generate_test_data/MATLAB_test_helpers/selectiontotale.m b/src/test/generate_test_data/MATLAB_test_helpers/selectiontotale.m
new file mode 100644
index 0000000..5d36a96
--- /dev/null
+++ b/src/test/generate_test_data/MATLAB_test_helpers/selectiontotale.m
@@ -0,0 +1,54 @@
+function[A1,A2,Rho,Pi] = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda,X,Y,seuil,tau)
+
+	[p,m,k] = size(phiInit);
+	L = length(glambda);
+	A1 = zeros(p,m+1,L,'int64');
+	A2 = zeros(p,m+1,L,'int64');
+	Rho = zeros(m,m,k,L);
+	Pi = zeros(k,L);
+
+	%Pour chaque lambda de la grille, on calcule les coefficients
+	for lambdaIndex=1:L
+		[phi,rho,pi,~,~] = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,glambda(lambdaIndex),X,Y,tau);
+
+		%Si un des coefficients est supérieur au seuil, on garde cette variable
+		selectedVariables = zeros(p,m);
+		discardedVariables = zeros(p,m);
+		atLeastOneSelectedVariable = false;
+		for j=1:p
+			cpt=1;
+			cpt2=1;
+			for mm=1:m
+				if max(abs(phi(j,mm,:))) > seuil
+					selectedVariables(j,cpt) = mm;
+					cpt = cpt+1;
+					atLeastOneSelectedVariable = true;
+				else
+					discardedVariables(j,cpt2) = mm;
+					cpt2 = cpt2+1;
+				end
+			end
+		end
+
+		%Si aucun des coefficients n'a été gardé on renvoit la matrice nulle
+		%Et si on enlevait ces colonnes de zéro ??? Indices des colonnes vides
+		if atLeastOneSelectedVariable
+			vec = [];
+			for j=1:p
+				if selectedVariables(j,1) ~= 0
+					vec = [vec;j];
+				end
+			end
+
+			%Sinon on renvoit les numéros des coefficients utiles
+			A1(:,1,lambdaIndex) = [vec;zeros(p-length(vec),1)];
+			A1(1:length(vec),2:m+1,lambdaIndex) = selectedVariables(vec,:);
+			A2(:,1,lambdaIndex) = 1:p;
+			A2(:,2:m+1,lambdaIndex) = discardedVariables;
+			Rho(:,:,:,lambdaIndex) = rho;
+			Pi(:,lambdaIndex) = pi;
+		end
+
+	end
+
+end
diff --git a/src/test/TEST R/checkOutput.R b/src/test/generate_test_data/R_test_helpers/checkOutput.R
similarity index 100%
rename from src/test/TEST R/checkOutput.R
rename to src/test/generate_test_data/R_test_helpers/checkOutput.R
diff --git a/src/test/TEST R/covariance.R b/src/test/generate_test_data/R_test_helpers/covariance.R
similarity index 100%
rename from src/test/TEST R/covariance.R
rename to src/test/generate_test_data/R_test_helpers/covariance.R
diff --git a/src/test/TEST R/testEMGLLF.R b/src/test/generate_test_data/R_test_helpers/testEMGLLF.R
similarity index 100%
rename from src/test/TEST R/testEMGLLF.R
rename to src/test/generate_test_data/R_test_helpers/testEMGLLF.R
diff --git a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_EMGLLF.m b/src/test/generate_test_data/generateRunSaveTest_EMGLLF.m
similarity index 98%
rename from src/test/OLD_TEST_MATLAB/generateRunSaveTest_EMGLLF.m
rename to src/test/generate_test_data/generateRunSaveTest_EMGLLF.m
index bf0badf..b668a57 100644
--- a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_EMGLLF.m
+++ b/src/test/generate_test_data/generateRunSaveTest_EMGLLF.m
@@ -19,7 +19,7 @@ function[] = generateRunSaveTest_EMGLLF(n, p, m, k, mini, maxi, gamma, lambda, v
 
 	testFolder = 'data/';
 	mkdir(testFolder);
-	delimiter = '\n';
+	delimiter = ' ';
 
 	%save inputs
 	dlmwrite(strcat(testFolder,'phiInit'), reshape(phiInit,1,[]), delimiter);
diff --git a/src/test/generate_test_data/generateRunSaveTest_EMGrank.m b/src/test/generate_test_data/generateRunSaveTest_EMGrank.m
new file mode 100644
index 0000000..2301aa5
--- /dev/null
+++ b/src/test/generate_test_data/generateRunSaveTest_EMGrank.m
@@ -0,0 +1,45 @@
+function[] = generateRunSaveTest_EMGrank(n, p, m, k, mini, maxi, gamma, rank, varargin)
+
+	%set defaults for optional inputs
+	optargs = {200 15 10 3 5 10 1.0 1:3};
+	%replace defaults by user parameters
+	optargs(1:length(varargin)) = varargin;
+	[n, p, m, k, mini, maxi, gamma, rank] = optargs{:};
+	mini = int64(mini);
+	maxi = int64(maxi);
+	rank = int64(rank);
+	tau = 1e-6;
+
+	Pi = (1.0/k)*ones(1,k);
+	Rho = zeros(m,m,k);
+	for r=1:k
+		Rho(:,:,r) = eye(m);
+	end
+
+	%Generate X and Y
+	[X, Y, ~] = generateIOdefault(n, p, m, k);
+
+	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+	testFolder = 'data/';
+	mkdir(testFolder);
+	delimiter = ' ';
+
+	%save inputs
+	dlmwrite(strcat(testFolder,'Rho'), reshape(Rho,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'Pi'), Pi, delimiter);
+	dlmwrite(strcat(testFolder,'mini'), mini, delimiter);
+	dlmwrite(strcat(testFolder,'maxi'), maxi, delimiter);
+	dlmwrite(strcat(testFolder,'X'), reshape(X,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'Y'), reshape(Y,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'tau'), tau, delimiter);
+	dlmwrite(strcat(testFolder,'rank'), rank, delimiter);
+	dlmwrite(strcat(testFolder,'dimensions'), [n,p,m,k], delimiter);;
+
+	[phi,LLF] = EMGrank(Pi,Rho,mini,maxi,X,Y,tau,rank);
+
+	%save output
+	dlmwrite(strcat(testFolder,'phi'), reshape(phi,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'LLF'), LLF, delimiter);
+
+end
diff --git a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_constructionModelesLassoMLE.m b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoMLE.m
similarity index 98%
rename from src/test/OLD_TEST_MATLAB/generateRunSaveTest_constructionModelesLassoMLE.m
rename to src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoMLE.m
index 6e48d45..0ba83c1 100644
--- a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_constructionModelesLassoMLE.m
+++ b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoMLE.m
@@ -1,5 +1,5 @@
 function[] = generateRunSaveTest_constructionModelesLassoMLE(n, p, m, k, mini, maxi, gamma, glambda, varargin)
-	
+
 	%set defaults for optional inputs
 	optargs = {200 15 10 3 5 10 1.0 [0.0,0.01,0.02,0.03,0.05,0.1,0.2,0.3,0.5,0.7,0.85,0.99]};
 	%replace defaults by user parameters
@@ -27,12 +27,12 @@ function[] = generateRunSaveTest_constructionModelesLassoMLE(n, p, m, k, mini, m
         A1(:,1,i) = 1:p;
         A1(1:5,2,i) = 1:5;
     end
-    
+
 	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
 
 	testFolder = 'data/';
 	mkdir(testFolder);
-	delimiter = '\n';
+	delimiter = ' ';
 
 	%save inputs
 	dlmwrite(strcat(testFolder,'phiInit'), reshape(phiInit,1,[]), delimiter);
diff --git a/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoRank.m b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoRank.m
new file mode 100644
index 0000000..80d9db3
--- /dev/null
+++ b/src/test/generate_test_data/generateRunSaveTest_constructionModelesLassoRank.m
@@ -0,0 +1,59 @@
+function[] = generateRunSaveTest_constructionModelesLassoRank(n, p, m, k, L, mini, maxi, gamma, rangmin, rangmax, varargin)
+
+	%set defaults for optional inputs
+	optargs = {200 15 10 3 12 5 10 1.0 3 6};
+	%replace defaults by user parameters
+	optargs(1:length(varargin)) = varargin;
+	[n, p, m, k, L, mini, maxi, gamma, rangmin, rangmax] = optargs{:};
+	mini = int64(mini);
+	maxi = int64(maxi);
+	rangmin = int64(rangmin);
+	rangmax = int64(rangmax);
+	tau = 1e-6;
+
+	Pi = zeros(k,L);
+	for l=1:L
+		Pi(:,l) = (1.0/k)*ones(1,k);
+	end
+	Rho = zeros(m,m,k,L);
+	for l=1:L
+		for r=1:k
+			Rho(:,:,r,l) = eye(m);
+		end
+	end
+
+	%Generate X and Y
+	[X, Y, ~] = generateIOdefault(n, p, m, k);
+
+	A1 = zeros(p,L,'int64');
+    for i=1:L
+        A1(:,i) = 1:p;
+    end
+
+	%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
+
+	testFolder = 'data/';
+	mkdir(testFolder);
+	delimiter = ' ';
+
+	%save inputs
+	dlmwrite(strcat(testFolder,'Rho'), reshape(Rho,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'Pi'), reshape(Pi,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'mini'), mini, delimiter);
+	dlmwrite(strcat(testFolder,'maxi'), maxi, delimiter);
+	dlmwrite(strcat(testFolder,'X'), reshape(X,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'Y'), reshape(Y,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'tau'), tau, delimiter);
+	dlmwrite(strcat(testFolder,'A1'), reshape(A1,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'rangmin'), rangmin, delimiter);
+	dlmwrite(strcat(testFolder,'rangmax'), rangmax, delimiter);
+	dlmwrite(strcat(testFolder,'dimensions'), [n,p,m,k,L], delimiter);
+
+	[phi,lvraisemblance] = constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,tau,A1,rangmin,rangmax);
+
+	%save output
+	Size = (rangmax-rangmin+1)^k;
+	dlmwrite(strcat(testFolder,'phi'), reshape(phi,1,[]), delimiter);
+	dlmwrite(strcat(testFolder,'lvraisemblance'), reshape(lvraisemblance,1,[]), delimiter);
+
+end
diff --git a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_selectiontotale.m b/src/test/generate_test_data/generateRunSaveTest_selectiontotale.m
similarity index 98%
rename from src/test/OLD_TEST_MATLAB/generateRunSaveTest_selectiontotale.m
rename to src/test/generate_test_data/generateRunSaveTest_selectiontotale.m
index 6caee15..8985247 100644
--- a/src/test/OLD_TEST_MATLAB/generateRunSaveTest_selectiontotale.m
+++ b/src/test/generate_test_data/generateRunSaveTest_selectiontotale.m
@@ -13,7 +13,7 @@ function[] = generateRunSaveTest_selectiontotale(n, p, m, k, mini, maxi, gamma,
 
 	%Generate phiInit,piInit,...
 	[phiInit,rhoInit,piInit,gamInit] = basicInitParameters(n, p, m, k);
-	
+
 	%Generate X and Y
 	[X, Y, ~] = generateIOdefault(n, p, m, k);
 
@@ -21,7 +21,7 @@ function[] = generateRunSaveTest_selectiontotale(n, p, m, k, mini, maxi, gamma,
 
 	testFolder = 'data/';
 	mkdir(testFolder);
-	delimiter = '\n';
+	delimiter = ' ';
 
 	%save inputs
 	dlmwrite(strcat(testFolder,'phiInit'), reshape(phiInit,1,[]), delimiter);