From: Benjamin Auder <benjamin.auder@somewhere>
Date: Sun, 2 Apr 2017 13:17:21 +0000 (+0200)
Subject: no need to generate random IO params: migrate in test. Add roxygen2 NAMESPACE-generat... 
X-Git-Url: https://git.auder.net/js/doc/%3C?a=commitdiff_plain;h=086ca318ed5580e961ceda3f1e122a2da58e4427;p=valse.git

no need to generate random IO params: migrate in test. Add roxygen2 NAMESPACE-generator. roxygenize pkg a bit more
---

diff --git a/pkg/R/A_NAMESPACE.R b/pkg/R/A_NAMESPACE.R
new file mode 100644
index 0000000..62989ce
--- /dev/null
+++ b/pkg/R/A_NAMESPACE.R
@@ -0,0 +1,4 @@
+#' @useDynLib valse
+#'
+#' @importFrom parallel makeCluster parLapply stopCluster clusterExport
+NULL
diff --git a/pkg/R/gridLambda.R b/pkg/R/computeGridLambda.R
similarity index 63%
rename from pkg/R/gridLambda.R
rename to pkg/R/computeGridLambda.R
index 35c412a..f89b2a3 100644
--- a/pkg/R/gridLambda.R
+++ b/pkg/R/computeGridLambda.R
@@ -1,4 +1,7 @@
+#' computeGridLambda
+#'
 #' Construct the data-driven grid for the regularization parameters used for the Lasso estimator
+#'
 #' @param phiInit value for phi
 #' @param rhoInit	value for rho
 #' @param piInit	value for pi
@@ -6,20 +9,20 @@
 #' @param X matrix of covariates (of size n*p)
 #' @param Y matrix of responses (of size n*m)
 #' @param gamma power of weights in the penalty
-#' @param mini		minimum number of iterations in EM algorithm
-#' @param maxi		maximum number of iterations in EM algorithm
-#' @param tau		threshold to stop EM algorithm
+#' @param mini minimum number of iterations in EM algorithm
+#' @param maxi maximum number of iterations in EM algorithm
+#' @param tau threshold to stop EM algorithm
+#'
 #' @return the grid of regularization parameters
+#'
 #' @export
-#-----------------------------------------------------------------------
-gridLambda = function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, tau)
+computeGridLambda = function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, tau)
 {
 	n = nrow(X)
 	p = dim(phiInit)[1]
 	m = dim(phiInit)[2]
 	k = dim(phiInit)[3]
 
-	#list_EMG = .Call("EMGLLF_core",phiInit,rhoInit,piInit,gamInit,mini,maxi,1,0,X,Y,tau)
   list_EMG = EMGLLF(phiInit,rhoInit,piInit,gamInit,mini,maxi,1,0,X,Y,tau)
 	grid = array(0, dim=c(p,m,k))
 	for (i in 1:p)
@@ -29,6 +32,5 @@ gridLambda = function(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi
 	}
 	grid = unique(grid)
 	grid = grid[grid <=1]
-
-	return(grid)
+	grid
 }
diff --git a/pkg/R/generateXY.R b/pkg/R/generateXY.R
new file mode 100644
index 0000000..496d4e5
--- /dev/null
+++ b/pkg/R/generateXY.R
@@ -0,0 +1,39 @@
+#' generateXY
+#'
+#' Generate a sample of (X,Y) of size n
+#'
+#' @param n sample size
+#' @param π proportion for each cluster
+#' @param meanX matrix of group means for covariates (of size p)
+#' @param covX covariance for covariates (of size p*p)
+#' @param β regression matrix, of size p*m*k
+#' @param covY covariance for the response vector (of size m*m*K)
+#'
+#' @return list with X and Y
+#'
+#' @export
+generateXY = function(n, π, meanX, β, covX, covY)
+{
+	p <- dim(covX)[1]
+	m <- dim(covY)[1]
+	k <- dim(covY)[3]
+	
+	X <- matrix(nrow=0, ncol=p)
+	Y <- matrix(nrow=0, ncol=m)
+
+	#random generation of the size of each population in X~Y (unordered)
+	sizePop <- rmultinom(1, n, pi)
+	class <- c() #map i in 1:n --> index of class in 1:k
+
+	for (i in 1:k)
+	{
+		class <- c(class, rep(i, sizePop[i]))
+		newBlockX <- MASS::mvrnorm(sizePop[i], meanX, covX)
+		X <- rbind( X, newBlockX )
+		Y <- rbind( Y, apply( newBlockX, 1, function(row)
+			mvrnorm(1, row %*% beta[,,i], covY[,,i]) ) )
+	}
+
+	shuffle = sample(n)
+	list("X"=X[shuffle,], "Y"=Y[shuffle,], "class"=class[shuffle])
+}
diff --git a/pkg/R/main.R b/pkg/R/main.R
index 1908021..f080954 100644
--- a/pkg/R/main.R
+++ b/pkg/R/main.R
@@ -1,212 +1,120 @@
-#' @useDynLib valse
-
-Valse = setRefClass(
-	Class = "Valse",
-
-	fields = c(
-		# User defined
-
-		# regression data (size n*p, where n is the number of observations,
-		# and p is the number of regressors)
-		X = "matrix",
-		# response data (size n*m, where n is the number of observations,
-		# and m is the number of responses)
-		Y = "matrix",
-
-		# Optionally user defined (some default values)
-
-		# power in the penalty
-		gamma = "numeric",
-		# minimum number of iterations for EM algorithm
-		mini = "integer",
-		# maximum number of iterations for EM algorithm
-		maxi = "integer",
-		# threshold for stopping EM algorithm
-		eps = "numeric",
-		# minimum number of components in the mixture
-		kmin = "integer",
-		# maximum number of components in the mixture
-		kmax = "integer",
-		# ranks for the Lasso-Rank procedure
-		rank.min = "integer",
-		rank.max = "integer",
-
-		# Computed through the workflow
-
-		# initialisation for the reparametrized conditional mean parameter
-		phiInit = "numeric",
-		# initialisation for the reparametrized variance parameter
-		rhoInit = "numeric",
-		# initialisation for the proportions
-		piInit = "numeric",
-		# initialisation for the allocations probabilities in each component
-		tauInit = "numeric",
-		# values for the regularization parameter grid
-		gridLambda = "numeric",
-		# je ne crois pas vraiment qu'il faille les mettre en sortie, d'autant plus qu'on construit
-		# une matrice A1 et A2 pour chaque k, et elles sont grandes, donc ca coute un peu cher ...
-		A1 = "integer",
-		A2 = "integer",
-		# collection of estimations for the reparametrized conditional mean parameters
-		Phi = "numeric",
-		# collection of estimations for the reparametrized variance parameters
-		Rho = "numeric",
-		# collection of estimations for the proportions parameters
-		Pi = "numeric",
-
-		#immutable (TODO:?)
-		thresh = "numeric"
-	),
-
-	methods = list(
-		#######################
-		#initialize main object
-		#######################
-		initialize = function(X,Y,...)
-		{
-			"Initialize Valse object"
-
-			callSuper(...)
-
-			X <<- X
-			Y <<- Y
-			gamma <<- ifelse (hasArg("gamma"), gamma, 1.)
-			mini <<- ifelse (hasArg("mini"), mini, as.integer(5))
-			maxi <<- ifelse (hasArg("maxi"), maxi, as.integer(10))
-			eps <<- ifelse (hasArg("eps"), eps, 1e-6)
-			kmin <<- ifelse (hasArg("kmin"), kmin, as.integer(2))
-			kmax <<- ifelse (hasArg("kmax"), kmax, as.integer(3))
-			rank.min <<- ifelse (hasArg("rank.min"), rank.min, as.integer(2))
-			rank.max <<- ifelse (hasArg("rank.max"), rank.max, as.integer(3))
-			thresh <<- 1e-15 #immutable (TODO:?)
-		},
-
-		##################################
-		#core workflow: compute all models
-		##################################
-
-		initParameters = function(k)
+#' valse
+#'
+#' Main function
+#'
+#' @param X matrix of covariates (of size n*p)
+#' @param Y matrix of responses (of size n*m)
+#' @param procedure among 'LassoMLE' or 'LassoRank'
+#' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
+#' @param gamma integer for the power in the penaly, by default = 1
+#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
+#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
+#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
+#' @param kmin integer, minimum number of clusters, by default = 2
+#' @param kmax integer, maximum number of clusters, by default = 10
+#' @param rang.min integer, minimum rank in the low rank procedure, by default = 1
+#' @param rang.max integer, maximum rank in the
+#'
+#' @return a list with estimators of parameters
+#'
+#' @examples
+#' #TODO: a few examples
+#' @export
+valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'DDSE',gamma = 1,mini = 10,
+                 maxi = 50,eps = 1e-4,kmin = 2,kmax = 2,
+                 rang.min = 1,rang.max = 10)
+{
+  ####################
+  # compute all models
+  ####################
+
+  p = dim(X)[2]
+  m = dim(Y)[2]
+  n = dim(X)[1]
+  
+  model = list()
+  tableauRecap = array(0, dim=c(1000,4))
+  cpt = 0
+  print("main loop: over all k and all lambda")
+  
+  for (k in kmin:kmax)
+	{
+    print(k)
+    print("Parameters initialization")
+    #smallEM initializes parameters by k-means and regression model in each component,
+    #doing this 20 times, and keeping the values maximizing the likelihood after 10
+    #iterations of the EM algorithm.
+    init = initSmallEM(k, X, Y)
+    phiInit <- init$phiInit
+    rhoInit <- init$rhoInit
+    piInit	<- init$piInit
+    gamInit <- init$gamInit
+    grid_lambda <- computeGridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps)
+    
+    if (length(grid_lambda)>100)
+      grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)]
+    print("Compute relevant parameters")
+    #select variables according to each regularization parameter
+    #from the grid: A1 corresponding to selected variables, and
+    #A2 corresponding to unselected variables.
+    
+    params = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda,X,Y,1e-8,eps)
+    #params2 = selectVariables(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda[seq(1,length(grid_lambda), by=3)],X,Y,1e-8,eps)
+    ## etrange : params et params 2 sont différents ...
+    selected <- params$selected
+    Rho <- params$Rho
+    Pi <- params$Pi
+    
+    if (procedure == 'LassoMLE')
 		{
-			"Parameters initialization"
-
-			#smallEM initializes parameters by k-means and regression model in each component,
-			#doing this 20 times, and keeping the values maximizing the likelihood after 10
-			#iterations of the EM algorithm.
-			init = initSmallEM(k,X,Y)
-			phiInit <<- init$phi0
-			rhoInit <<- init$rho0
-			piInit	<<- init$pi0
-			tauInit <<- init$tau0
-		},
-
-		computeGridLambda = function()
+      print('run the procedure Lasso-MLE')
+      #compute parameter estimations, with the Maximum Likelihood
+      #Estimator, restricted on selected variables.
+      model[[k]] = constructionModelesLassoMLE(phiInit, rhoInit,piInit,gamInit,mini,maxi,gamma,X,Y,thresh,eps,selected)
+      llh = matrix(ncol = 2)
+      for (l in seq_along(model[[k]]))
+        llh = rbind(llh, model[[k]][[l]]$llh)
+      LLH = llh[-1,1]
+      D = llh[-1,2]
+    }
+		else
 		{
-			"computation of the regularization grid"
-			#(according to explicit formula given by EM algorithm)
-
-			gridLambda <<- gridLambda(phiInit,rhoInit,piInit,tauInit,X,Y,gamma,mini,maxi,eps)
-		},
-
-		computeRelevantParameters = function()
-		{
-			"Compute relevant parameters"
-
-			#select variables according to each regularization parameter
-			#from the grid: A1 corresponding to selected variables, and
-			#A2 corresponding to unselected variables.
-			params = selectiontotale(
-				phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,thresh,eps)
-			A1 <<- params$A1
-			A2 <<- params$A2
-			Rho <<- params$Rho
-			Pi <<- params$Pi
-		},
-
-		runProcedure1 = function()
-		{
-			"Run procedure 1 [EMGLLF]"
-
-			#compute parameter estimations, with the Maximum Likelihood
-			#Estimator, restricted on selected variables.
-			return ( constructionModelesLassoMLE(
-				phiInit,rhoInit,piInit,tauInit,mini,maxi,gamma,gridLambda,X,Y,thresh,eps,A1,A2) )
-		},
-
-		runProcedure2 = function()
-		{
-			"Run procedure 2 [EMGrank]"
-
-			#compute parameter estimations, with the Low Rank
-			#Estimator, restricted on selected variables.
-			return ( constructionModelesLassoRank(Pi,Rho,mini,maxi,X,Y,eps,
-				A1,rank.min,rank.max) )
-		},
-
-		run = function()
-		{
-			"main loop: over all k and all lambda"
-
-			# Run the whole procedure, 1 with the
-			#maximum likelihood refitting, and 2 with the Low Rank refitting.
-			p = dim(phiInit)[1]
-			m = dim(phiInit)[2]
-			for (k in kmin:kmax)
-			{
-				print(k)
-				initParameters(k)
-				computeGridLambda()
-				computeRelevantParameters()
-				if (procedure == 1)
-				{
-					r1 = runProcedure1()
-					Phi2 = Phi
-					Rho2 = Rho
-					Pi2 = Pi
-					p = ncol(X)
-					m = ncol(Y)
-					if (is.null(dim(Phi2))) #test was: size(Phi2) == 0
-					{
-						Phi[,,1:k] <<- r1$phi
-						Rho[,,1:k] <<- r1$rho
-						Pi[1:k,] <<- r1$pi
-					} else
-					{
-						Phi <<- array(0., dim=c(p,m,kmax,dim(Phi2)[4]+dim(r1$phi)[4]))
-						Phi[,,1:(dim(Phi2)[3]),1:(dim(Phi2)[4])] <<- Phi2
-						Phi[,,1:k,dim(Phi2)[4]+1] <<- r1$phi
-						Rho <<- array(0., dim=c(m,m,kmax,dim(Rho2)[4]+dim(r1$rho)[4]))
-						Rho[,,1:(dim(Rho2)[3]),1:(dim(Rho2)[4])] <<- Rho2
-						Rho[,,1:k,dim(Rho2)[4]+1] <<- r1$rho
-						Pi <<- array(0., dim=c(kmax,dim(Pi2)[2]+dim(r1$pi)[2]))
-						Pi[1:nrow(Pi2),1:ncol(Pi2)] <<- Pi2
-						Pi[1:k,ncol(Pi2)+1] <<- r1$pi
-					}
-				} else
-				{
-					phi = runProcedure2()$phi
-					Phi2 = Phi
-					if (dim(Phi2)[1] == 0)
-					{
-						Phi[,,1:k,] <<- phi
-					} else
-					{
-						Phi <<- array(0., dim=c(p,m,kmax,dim(Phi2)[4]+dim(phi)[4]))
-						Phi[,,1:(dim(Phi2)[3]),1:(dim(Phi2)[4])] <<- Phi2
-						Phi[,,1:k,-(1:(dim(Phi2)[4]))] <<- phi
-					}
-				}
-			}
-		}
-
-		##################################################
-		#TODO: pruning: select only one (or a few best ?!) model
-		##################################################
-		#
-		# 		function[model] selectModel(
-		# 			#TODO
-		# 			#model = odel(...)
-		# 		end
-		# Give at least the slope heuristic and BIC, and AIC ?
-
-		)
-)
+      print('run the procedure Lasso-Rank')
+      #compute parameter estimations, with the Low Rank
+      #Estimator, restricted on selected variables.
+      model = constructionModelesLassoRank(Pi, Rho, mini, maxi, X, Y, eps,
+                                           A1, rank.min, rank.max)
+      
+      ################################################
+      ### Regarder la SUITE  
+      phi = runProcedure2()$phi
+      Phi2 = Phi
+      if (dim(Phi2)[1] == 0)
+        Phi[, , 1:k,] <- phi
+      else
+      {
+        Phi <- array(0, dim = c(p, m, kmax, dim(Phi2)[4] + dim(phi)[4]))
+        Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2
+        Phi[, , 1:k,-(1:(dim(Phi2)[4]))] <<- phi
+      }
+    }
+    tableauRecap[(cpt+1):(cpt+length(model[[k]])), ] = matrix(c(LLH, D, rep(k, length(model[[k]])), 1:length(model[[k]])), ncol = 4)
+    cpt = cpt+length(model[[k]])
+  }
+  print('Model selection')
+  tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,]
+  tableauRecap = tableauRecap[(tableauRecap[,1])!=Inf,]
+  data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1])
+	require(capushe)
+  modSel = capushe(data, n)
+  indModSel <-
+		if (selecMod == 'DDSE')
+			as.numeric(modSel@DDSE@model)
+		else if (selecMod == 'Djump')
+			as.numeric(modSel@Djump@model)
+		else if (selecMod == 'BIC')
+			modSel@BIC_capushe$model
+		else if (selecMod == 'AIC')
+			modSel@AIC_capushe$model
+  model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]]
+}
diff --git a/pkg/R/valse.R b/pkg/R/valse.R
deleted file mode 100644
index d5d10ce..0000000
--- a/pkg/R/valse.R
+++ /dev/null
@@ -1,113 +0,0 @@
-#' Main function
-#'
-#' @param X matrix of covariates (of size n*p)
-#' @param Y matrix of responses (of size n*m)
-#' @param procedure among 'LassoMLE' or 'LassoRank'
-#' @param selecMod method to select a model among 'DDSE', 'DJump', 'BIC' or 'AIC'
-#' @param gamma integer for the power in the penaly, by default = 1
-#' @param mini integer, minimum number of iterations in the EM algorithm, by default = 10
-#' @param maxi integer, maximum number of iterations in the EM algorithm, by default = 100
-#' @param eps real, threshold to say the EM algorithm converges, by default = 1e-4
-#' @param kmin integer, minimum number of clusters, by default = 2
-#' @param kmax integer, maximum number of clusters, by default = 10
-#' @param rang.min integer, minimum rank in the low rank procedure, by default = 1
-#' @param rang.max integer, maximum rank in the
-#' @return a list with estimators of parameters
-#' @export
-#-----------------------------------------------------------------------
-valse = function(X,Y,procedure = 'LassoMLE',selecMod = 'DDSE',gamma = 1,mini = 10,
-                 maxi = 50,eps = 1e-4,kmin = 2,kmax = 2,
-                 rang.min = 1,rang.max = 10) {
-  ##################################
-  #core workflow: compute all models
-  ##################################
-  
-  p = dim(X)[2]
-  m = dim(Y)[2]
-  n = dim(X)[1]
-  
-  model = list()
-  tableauRecap = array(0, dim=c(1000,4))
-  cpt = 0
-  print("main loop: over all k and all lambda")
-  
-  for (k in kmin:kmax){
-    print(k)
-    print("Parameters initialization")
-    #smallEM initializes parameters by k-means and regression model in each component,
-    #doing this 20 times, and keeping the values maximizing the likelihood after 10
-    #iterations of the EM algorithm.
-    init = initSmallEM(k, X, Y)
-    phiInit <<- init$phiInit
-    rhoInit <<- init$rhoInit
-    piInit	<<- init$piInit
-    gamInit <<- init$gamInit
-    grid_lambda <<- gridLambda(phiInit, rhoInit, piInit, gamInit, X, Y, gamma, mini, maxi, eps)
-    
-    if (length(grid_lambda)>100){
-      grid_lambda = grid_lambda[seq(1, length(grid_lambda), length.out = 100)]
-    }
-    print("Compute relevant parameters")
-    #select variables according to each regularization parameter
-    #from the grid: A1 corresponding to selected variables, and
-    #A2 corresponding to unselected variables.
-    
-    params = selectiontotale(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda,X,Y,1e-8,eps)
-    #params2 = selectVariables(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,grid_lambda[seq(1,length(grid_lambda), by=3)],X,Y,1e-8,eps)
-    ## etrange : params et params 2 sont différents ...
-    selected <<- params$selected
-    Rho <<- params$Rho
-    Pi <<- params$Pi
-    
-    if (procedure == 'LassoMLE') {
-      print('run the procedure Lasso-MLE')
-      #compute parameter estimations, with the Maximum Likelihood
-      #Estimator, restricted on selected variables.
-      model[[k]] = constructionModelesLassoMLE(phiInit, rhoInit,piInit,gamInit,mini,maxi,gamma,X,Y,thresh,eps,selected)
-      llh = matrix(ncol = 2)
-      for (l in seq_along(model[[k]])){
-        llh = rbind(llh, model[[k]][[l]]$llh)
-      }
-      LLH = llh[-1,1]
-      D = llh[-1,2]
-    } else {
-      print('run the procedure Lasso-Rank')
-      #compute parameter estimations, with the Low Rank
-      #Estimator, restricted on selected variables.
-      model = constructionModelesLassoRank(Pi, Rho, mini, maxi, X, Y, eps,
-                                           A1, rank.min, rank.max)
-      
-      ################################################
-      ### Regarder la SUITE  
-      phi = runProcedure2()$phi
-      Phi2 = Phi
-      if (dim(Phi2)[1] == 0)
-      {
-        Phi[, , 1:k,] <<- phi
-      } else
-      {
-        Phi <<- array(0, dim = c(p, m, kmax, dim(Phi2)[4] + dim(phi)[4]))
-        Phi[, , 1:(dim(Phi2)[3]), 1:(dim(Phi2)[4])] <<- Phi2
-        Phi[, , 1:k,-(1:(dim(Phi2)[4]))] <<- phi
-      }
-    }
-    tableauRecap[(cpt+1):(cpt+length(model[[k]])), ] = matrix(c(LLH, D, rep(k, length(model[[k]])), 1:length(model[[k]])), ncol = 4)
-    cpt = cpt+length(model[[k]])
-  }
-  print('Model selection')
-  tableauRecap = tableauRecap[rowSums(tableauRecap[, 2:4])!=0,]
-  tableauRecap = tableauRecap[(tableauRecap[,1])!=Inf,]
-  data = cbind(1:dim(tableauRecap)[1], tableauRecap[,2], tableauRecap[,2], tableauRecap[,1])
-  require(capushe)
-  modSel = capushe(data, n)
-  if (selecMod == 'DDSE') {
-    indModSel = as.numeric(modSel@DDSE@model)
-  } else if (selecMod == 'Djump') {
-    indModSel = as.numeric(modSel@Djump@model)
-  } else if (selecMod == 'BIC') {
-    indModSel = modSel@BIC_capushe$model
-  } else if (selecMod == 'AIC') {
-    indModSel = modSel@AIC_capushe$model
-  }
-  return(model[[tableauRecap[indModSel,3]]][[tableauRecap[indModSel,4]]])
-}
diff --git a/test/generate_test_data/generateRunSaveTest_EMGLLF.R b/test/generate_test_data/generateRunSaveTest_EMGLLF.R
index e0bb3b8..bf68ab3 100644
--- a/test/generate_test_data/generateRunSaveTest_EMGLLF.R
+++ b/test/generate_test_data/generateRunSaveTest_EMGLLF.R
@@ -1,4 +1,5 @@
 source("EMGLLF.R")
+source("helper.R")
 
 generateRunSaveTest_EMGLLF = function(n=200, p=15, m=10, k=3, mini=5, maxi=10,
 	gamma=1., lambda=0.5, tau=1e-6)
diff --git a/test/generate_test_data/generateRunSaveTest_EMGrank.R b/test/generate_test_data/generateRunSaveTest_EMGrank.R
index f75c8d1..f348d71 100644
--- a/test/generate_test_data/generateRunSaveTest_EMGrank.R
+++ b/test/generate_test_data/generateRunSaveTest_EMGrank.R
@@ -1,4 +1,5 @@
 source("EMGrank.R")
+source("helper.R")
 
 generateRunSaveTest_EMGrank = function(n=200, p=15, m=10, k=3, mini=5, maxi=10, gamma=1.0,
 	rank = c(1,2,4))
diff --git a/pkg/R/generateSampleInputs.R b/test/generate_test_data/helper.R
similarity index 63%
rename from pkg/R/generateSampleInputs.R
rename to test/generate_test_data/helper.R
index c7aa3c6..49cd1b5 100644
--- a/pkg/R/generateSampleInputs.R
+++ b/test/generate_test_data/helper.R
@@ -1,34 +1,3 @@
-#' Generate a sample of (X,Y) of size n
-#' @param meanX matrix of group means for covariates (of size p)
-#' @param covX covariance for covariates (of size p*p)
-#' @param covY covariance for the response vector (of size m*m*K)
-#' @param pi	 proportion for each cluster
-#' @param beta regression matrix, of size p*m*k
-#' @param n		sample size
-#'
-#' @return list with X and Y
-#' @export
-generateXY = function(meanX, covX, covY, pi, beta, n)
-{
-	p = dim(covX)[1]
-	m = dim(covY)[1]
-	k = dim(covY)[3]
-	
-	X = matrix(nrow=n,ncol=p)
-	Y = matrix(nrow=n,ncol=m)
-	class = matrix(nrow = n)
-	
-	require(MASS) #simulate from a multivariate normal distribution
-	for (i in 1:n)
-	{
-		class[i] = sample(1:k, 1, prob=pi)
-		X[i,] = mvrnorm(1, meanX, covX)
-		Y[i,] = mvrnorm(1, X[i,] %*% beta[,,class[i]], covY[,,class[i]])
-	}
-	
-	return (list(X=X,Y=Y, class = class))
-}
-
 #' Generate a sample of (X,Y) of size n with default values
 #' @param n sample size
 #' @param p number of covariates
@@ -42,9 +11,7 @@ generateXYdefault = function(n, p, m, k)
 	covX = diag(p)
 	covY = array(dim=c(m,m,k))
 	for(r in 1:k)
-	{
 		covY[,,r] = diag(m)
-	}
 	pi = rep(1./k,k)
 	#initialize beta to a random number of non-zero random value
 	beta = array(0, dim=c(p,m,k))