| 1 | #' Sample dataset to run the algorithm |
| 2 | #' |
| 3 | #' Original data from AirNormand was removed, and replaced with the following: |
| 4 | #' \itemize{ |
| 5 | #' \item{daily_exogenous.csv}{a CSV file containing dates in the first column, and then n columns for measurements, and finally n columns for predictions (same day)} |
| 6 | #' \item{intraday_measures.csv}{a CSV file with two columns: the first with datetimes, and the second with measurements} |
| 7 | #' } |
| 8 | #' -----\cr |
| 9 | #' Here is the code that generated these files: (not any physical sense)\cr |
| 10 | #' #dts = timestamps from 1970-01-01 01:00 to 1972-01-01 00:00\cr |
| 11 | #' dts = seq(0,17519*3600,3600)\cr |
| 12 | #' intraday = data.frame(\cr |
| 13 | #' Time=as.POSIXct(dts,tz="GMT",origin="1970-01-01 01:00"),\cr |
| 14 | #' Measure=rgamma(length(dts),10,.7) )\cr |
| 15 | #' dates = seq(as.Date("1970-01-01"), as.Date("1972-01-01"), "day")\cr |
| 16 | #' m1 = cos(seq_along(dates))\cr |
| 17 | #' m2 = log(seq_along(dates)+1)\cr |
| 18 | #' daily = data.frame(\cr |
| 19 | #' Date=dates,\cr |
| 20 | #' m1=m1,\cr |
| 21 | #' m2=m2,\cr |
| 22 | #' m1_pred=m1+rnorm(length(m1),sd=.1),\cr |
| 23 | #' m2_pred=m2+rnorm(length(m2),sd=.1) )\cr |
| 24 | #' write.csv(intraday, file="intraday_measures.csv", row.names=F)\cr |
| 25 | #' write.csv(daily, file="daily_exogenous.csv", row.names=F) |
| 26 | #' |
| 27 | #' @name sample |
| 28 | #' @docType data |
| 29 | #' @usage data(talweg::sample) |
| 30 | #' @format Two dataframes: intraday with 17519 rows and 2 columns (Time,Measure), hourly; |
| 31 | #' and daily with 731 rows, 5 columns (Date,m1,m2,m1_pred,m2_pred) |
| 32 | NULL |