| 1 | import { ChessRules, Move } from "@/base_rules"; |
| 2 | import { Synchrone1Rules } from "@/variants/Synchrone1"; |
| 3 | import { randInt } from "@/utils/alea"; |
| 4 | |
| 5 | export class Synchrone2Rules extends Synchrone1Rules { |
| 6 | |
| 7 | static get CanAnalyze() { |
| 8 | return false; |
| 9 | } |
| 10 | |
| 11 | static get HasEnpassant() { |
| 12 | return false; |
| 13 | } |
| 14 | |
| 15 | static IsGoodFen(fen) { |
| 16 | if (!Synchrone1Rules.IsGoodFen(fen)) return false; |
| 17 | const fenParsed = V.ParseFen(fen); |
| 18 | // 5) Check initFen (not really... TODO?) |
| 19 | if (!fenParsed.initFen) return false; |
| 20 | return true; |
| 21 | } |
| 22 | |
| 23 | static ParseFen(fen) { |
| 24 | const fenParts = fen.split(" "); |
| 25 | return Object.assign( |
| 26 | { |
| 27 | initFen: fenParts[4], |
| 28 | whiteMove: fenParts[5] |
| 29 | }, |
| 30 | ChessRules.ParseFen(fen) |
| 31 | ); |
| 32 | } |
| 33 | |
| 34 | getInitfenFen() { |
| 35 | const L = this.initfenStack.length; |
| 36 | return L > 0 ? this.initfenStack[L-1] : "-"; |
| 37 | } |
| 38 | |
| 39 | getFen() { |
| 40 | return ( |
| 41 | super.getBaseFen() + " " + |
| 42 | super.getTurnFen() + " " + |
| 43 | this.movesCount + " " + |
| 44 | super.getFlagsFen() + " " + |
| 45 | this.getInitfenFen() + " " + |
| 46 | this.getWhitemoveFen() |
| 47 | ); |
| 48 | } |
| 49 | |
| 50 | static GenRandInitFen(options) { |
| 51 | const res = ChessRules.GenRandInitFen(options); |
| 52 | // Add initFen field: |
| 53 | return res.slice(0, -1) + res.split(' ')[0] + " -"; |
| 54 | } |
| 55 | |
| 56 | setOtherVariables(fen) { |
| 57 | const parsedFen = V.ParseFen(fen); |
| 58 | this.setFlags(parsedFen.flags); |
| 59 | super.scanKings(fen); |
| 60 | // Also init whiteMove |
| 61 | this.whiteMove = |
| 62 | parsedFen.whiteMove != "-" |
| 63 | ? JSON.parse(parsedFen.whiteMove) |
| 64 | : null; |
| 65 | // And initFen (could be empty) |
| 66 | this.initfenStack = []; |
| 67 | if (parsedFen.initFen != "-") this.initfenStack.push(parsedFen.initFen); |
| 68 | } |
| 69 | |
| 70 | getPotentialMovesFrom([x, y]) { |
| 71 | if (this.movesCount % 4 <= 1) return super.getPotentialMovesFrom([x, y]); |
| 72 | // Diff current and old board to know which pieces have moved, |
| 73 | // and to deduce possible moves at stage 2. |
| 74 | const L = this.initfenStack.length; |
| 75 | let initBoard = V.GetBoard(this.initfenStack[L-1]); |
| 76 | let appeared = []; |
| 77 | const c = this.turn; |
| 78 | const oppCol = V.GetOppCol(c); |
| 79 | for (let i=0; i<8; i++) { |
| 80 | for (let j=0; j<8; j++) { |
| 81 | if (this.board[i][j] != initBoard[i][j]) { |
| 82 | if (this.board[i][j] != V.EMPTY) { |
| 83 | const color = this.board[i][j].charAt(0); |
| 84 | appeared.push({ c: color, x: i, y: j }); |
| 85 | // Pawns capture in diagonal => the following fix. |
| 86 | // (Other way would be to redefine getPotentialPawnMoves()...) |
| 87 | if (color == oppCol) initBoard[i][j] = this.board[i][j]; |
| 88 | } |
| 89 | } |
| 90 | } |
| 91 | } |
| 92 | const saveBoard = this.board; |
| 93 | this.board = initBoard; |
| 94 | const movesInit = super.getPotentialMovesFrom([x, y]); |
| 95 | this.board = saveBoard; |
| 96 | const target = appeared.find(a => a.c == oppCol) || { x: -1, y: -1 }; |
| 97 | let movesNow = super.getPotentialMovesFrom([x, y]).filter(m => { |
| 98 | return ( |
| 99 | m.end.x == target.x && |
| 100 | m.end.y == target.y && |
| 101 | movesInit.some(mi => mi.end.x == m.end.x && mi.end.y == m.end.y) |
| 102 | ); |
| 103 | }); |
| 104 | const passTarget = |
| 105 | (x != this.kingPos[c][0] || y != this.kingPos[c][1]) ? c : oppCol; |
| 106 | movesNow.push( |
| 107 | new Move({ |
| 108 | start: { x: x, y: y }, |
| 109 | end: { |
| 110 | x: this.kingPos[passTarget][0], |
| 111 | y: this.kingPos[passTarget][1] |
| 112 | }, |
| 113 | appear: [], |
| 114 | vanish: [] |
| 115 | }) |
| 116 | ); |
| 117 | return movesNow; |
| 118 | } |
| 119 | |
| 120 | filterValid(moves) { |
| 121 | const nonEmptyMove = moves.find(m => m.vanish.length > 0); |
| 122 | if (!nonEmptyMove) return moves; |
| 123 | // filterValid can be called when it's "not our turn": |
| 124 | const color = nonEmptyMove.vanish[0].c; |
| 125 | return moves.filter(m => { |
| 126 | if (m.vanish.length == 0) return true; |
| 127 | const piece = m.vanish[0].p; |
| 128 | if (piece == V.KING) { |
| 129 | this.kingPos[color][0] = m.appear[0].x; |
| 130 | this.kingPos[color][1] = m.appear[0].y; |
| 131 | } |
| 132 | V.PlayOnBoard(this.board, m); |
| 133 | let res = !this.underCheck(color); |
| 134 | V.UndoOnBoard(this.board, m); |
| 135 | if (piece == V.KING) this.kingPos[color] = [m.start.x, m.start.y]; |
| 136 | return res; |
| 137 | }); |
| 138 | } |
| 139 | |
| 140 | getPossibleMovesFrom([x, y]) { |
| 141 | return this.filterValid(this.getPotentialMovesFrom([x, y])); |
| 142 | } |
| 143 | |
| 144 | getAllValidMoves() { |
| 145 | const moves = this.filterValid(super.getAllPotentialMoves()); |
| 146 | if (this.movesCount % 4 <= 1) return moves; |
| 147 | const emptyIdx = moves.findIndex(m => m.vanish.length == 0); |
| 148 | if (emptyIdx >= 0) |
| 149 | // Keep only one pass move (for computer play) |
| 150 | return moves.filter((m, i) => m.vanish.length > 0 || i == emptyIdx); |
| 151 | return moves; |
| 152 | } |
| 153 | |
| 154 | play(move, noFlag) { |
| 155 | if (this.movesCount % 4 == 0) this.initfenStack.push(this.getBaseFen()); |
| 156 | if (!noFlag) move.flags = JSON.stringify(this.aggregateFlags()); |
| 157 | // Do not play on board (would reveal the move...) |
| 158 | this.turn = V.GetOppCol(this.turn); |
| 159 | this.movesCount++; |
| 160 | if ([0, 3].includes(this.movesCount % 4)) this.postPlay(move); |
| 161 | else super.postPlay(move); //resolve synchrone move |
| 162 | } |
| 163 | |
| 164 | postPlay(move) { |
| 165 | if (this.turn == 'b') { |
| 166 | // NOTE: whiteMove is used read-only, so no need to copy |
| 167 | this.whiteMove = move; |
| 168 | return; |
| 169 | } |
| 170 | |
| 171 | // A full "deterministic" turn just ended: no need to resolve |
| 172 | const smove = { |
| 173 | appear: this.whiteMove.appear.concat(move.appear), |
| 174 | vanish: this.whiteMove.vanish.concat(move.vanish) |
| 175 | }; |
| 176 | V.PlayOnBoard(this.board, smove); |
| 177 | move.whiteMove = this.whiteMove; //for undo |
| 178 | this.whiteMove = null; |
| 179 | |
| 180 | // Update king position + flags |
| 181 | let kingAppear = { 'w': false, 'b': false }; |
| 182 | for (let i=0; i < smove.appear.length; i++) { |
| 183 | if (smove.appear[i].p == V.KING) { |
| 184 | const c = smove.appear[i].c; |
| 185 | kingAppear[c] = true; |
| 186 | this.kingPos[c][0] = smove.appear[i].x; |
| 187 | this.kingPos[c][1] = smove.appear[i].y; |
| 188 | } |
| 189 | } |
| 190 | for (let i = 0; i < smove.vanish.length; i++) { |
| 191 | if (smove.vanish[i].p == V.KING) { |
| 192 | const c = smove.vanish[i].c; |
| 193 | if (!kingAppear[c]) { |
| 194 | this.kingPos[c][0] = -1; |
| 195 | this.kingPos[c][1] = -1; |
| 196 | } |
| 197 | break; |
| 198 | } |
| 199 | } |
| 200 | super.updateCastleFlags(smove); |
| 201 | move.smove = smove; |
| 202 | } |
| 203 | |
| 204 | undo(move, noFlag) { |
| 205 | if (!noFlag) this.disaggregateFlags(JSON.parse(move.flags)); |
| 206 | if (this.turn == 'w') |
| 207 | // Back to the middle of the move |
| 208 | V.UndoOnBoard(this.board, move.smove); |
| 209 | this.turn = V.GetOppCol(this.turn); |
| 210 | this.movesCount--; |
| 211 | if (this.movesCount % 4 == 0) this.initfenStack.pop(); |
| 212 | this.postUndo(move); |
| 213 | } |
| 214 | |
| 215 | postUndo(move) { |
| 216 | if (this.turn == 'w') { |
| 217 | // Reset king positions: scan board (TODO: could be more efficient) |
| 218 | if (move.vanish.length > 0) this.scanKings(); |
| 219 | // Also reset whiteMove |
| 220 | this.whiteMove = null; |
| 221 | } |
| 222 | else this.whiteMove = move.whiteMove; |
| 223 | } |
| 224 | |
| 225 | getCurrentScore() { |
| 226 | if (this.movesCount % 2 != 0) |
| 227 | // Turn [white + black] not over yet |
| 228 | return "*"; |
| 229 | // Was a king captured? |
| 230 | if (this.kingPos['w'][0] < 0) return "0-1"; |
| 231 | if (this.kingPos['b'][0] < 0) return "1-0"; |
| 232 | if (this.movesCount % 4 == 2) |
| 233 | // Turn (2 x [white + black]) not over yet |
| 234 | return "*"; |
| 235 | const whiteCanMove = this.atLeastOneMove('w'); |
| 236 | const blackCanMove = this.atLeastOneMove('b'); |
| 237 | if (whiteCanMove && blackCanMove) return "*"; |
| 238 | // Game over |
| 239 | const whiteInCheck = this.underCheck('w'); |
| 240 | const blackInCheck = this.underCheck('b'); |
| 241 | if ( |
| 242 | (whiteCanMove && !this.underCheck('b')) || |
| 243 | (blackCanMove && !this.underCheck('w')) |
| 244 | ) { |
| 245 | return "1/2"; |
| 246 | } |
| 247 | // Checkmate: could be mutual |
| 248 | if (!whiteCanMove && !blackCanMove) return "1/2"; |
| 249 | return (whiteCanMove ? "1-0" : "0-1"); |
| 250 | } |
| 251 | |
| 252 | getComputerMove() { |
| 253 | if (this.movesCount % 4 <= 1) return super.getComputerMove(); |
| 254 | const moves = this.getAllValidMoves(); |
| 255 | return moves[randInt(moves.length)]; |
| 256 | } |
| 257 | |
| 258 | getNotation(move) { |
| 259 | if (move.vanish.length == 0) return "pass"; |
| 260 | return super.getNotation(move); |
| 261 | } |
| 262 | |
| 263 | }; |