From: Benjamin Auder Date: Mon, 14 Jun 2021 14:57:25 +0000 (+0200) Subject: Fix agghoo for tree / rpart X-Git-Url: https://git.auder.net/img/vendor/vue.min.js?a=commitdiff_plain;h=7b5193cdf5eb7041710c52368764feeacbb36a7c;p=agghoo.git Fix agghoo for tree / rpart --- diff --git a/R/R6_AgghooCV.R b/R/R6_AgghooCV.R index 2734d69..c555641 100644 --- a/R/R6_AgghooCV.R +++ b/R/R6_AgghooCV.R @@ -89,7 +89,8 @@ AgghooCV <- R6::R6Class("AgghooCV", return (invisible(NULL)) } V <- length(private$pmodels) - if (length(private$pmodels[[1]]$model(X[1,])) >= 2) + oneLineX <- as.data.frame(t(as.matrix(X[1,]))) + if (length(private$pmodels[[1]]$model(oneLineX)) >= 2) # Soft classification: return (Reduce("+", lapply(private$pmodels, function(m) m$model(X))) / V) n <- nrow(X) diff --git a/R/R6_Model.R b/R/R6_Model.R index 8fc2324..96f892d 100644 --- a/R/R6_Model.R +++ b/R/R6_Model.R @@ -73,9 +73,15 @@ Model <- R6::R6Class("Model", function(dataHO, targetHO, param) { require(rpart) method <- ifelse(task == "classification", "class", "anova") + if (is.null(colnames(dataHO))) + colnames(dataHO) <- paste0("V", 1:ncol(dataHO)) df <- data.frame(cbind(dataHO, target=targetHO)) model <- rpart::rpart(target ~ ., df, method=method, control=list(cp=param)) - function(X) predict(model, X) + function(X) { + if (is.null(colnames(X))) + colnames(X) <- paste0("V", 1:ncol(X)) + predict(model, as.data.frame(X)) + } } } else if (family == "rf") { @@ -115,18 +121,17 @@ Model <- R6::R6Class("Model", require(rpart) df <- data.frame(cbind(data, target=target)) ctrl <- list( + cp = 0, minsplit = 2, minbucket = 1, - maxcompete = 0, - maxsurrogate = 0, - usesurrogate = 0, - xval = 0, - surrogatestyle = 0, - maxdepth = 30) + xval = 0) r <- rpart(target ~ ., df, method="class", control=ctrl) cps <- r$cptable[-1,1] - if (length(cps) <= 11) + if (length(cps) <= 11) { + if (length(cps == 0)) + stop("No cross-validation possible: select another model") return (cps) + } step <- (length(cps) - 1) / 10 cps[unique(round(seq(1, length(cps), step)))] } diff --git a/test/compareToCV.R b/test/compareToCV.R index a124dd2..276749b 100644 --- a/test/compareToCV.R +++ b/test/compareToCV.R @@ -101,23 +101,26 @@ compareToCV <- function(df, t_idx, task=NULL, rseed=-1, verbose=TRUE, ...) { task <- ifelse(is.numeric(df[,t_idx]), "regression", "classification") n <- nrow(df) test_indices <- sample( n, round(n / ifelse(n >= 500, 10, 5)) ) - a <- agghoo(df[-test_indices,-t_idx], df[-test_indices,t_idx], task, ...) + data <- as.matrix(df[-test_indices,-t_idx]) + target <- df[-test_indices,t_idx] + test <- as.matrix(df[test_indices,-t_idx]) + a <- agghoo(data, target, task, ...) a$fit() if (verbose) { print("Parameters:") print(unlist(a$getParams())) } - pa <- a$predict(df[test_indices,-t_idx]) + pa <- a$predict(test) err_a <- ifelse(task == "classification", mean(pa != df[test_indices,t_idx]), mean(abs(pa - df[test_indices,t_idx]))) if (verbose) print(paste("error agghoo:", err_a)) # Compare with standard cross-validation: - s <- standardCV(df[-test_indices,-t_idx], df[-test_indices,t_idx], task, ...) + s <- standardCV(data, target, task, ...) if (verbose) print(paste( "Parameter:", s$param )) - ps <- s$model(df[test_indices,-t_idx]) + ps <- s$model(test) err_s <- ifelse(task == "classification", mean(ps != df[test_indices,t_idx]), mean(abs(ps - df[test_indices,t_idx]))) @@ -130,10 +133,15 @@ library(parallel) compareMulti <- function(df, t_idx, task = NULL, N = 100, nc = NA, ...) { if (is.na(nc)) nc <- detectCores() - errors <- mclapply(1:N, - function(n) { - compareToCV(df, t_idx, task, n, verbose=FALSE, ...) }, - mc.cores = nc) + compareOne <- function(n) { + print(n) + compareToCV(df, t_idx, task, n, verbose=FALSE, ...) + } + errors <- if (nc >= 2) { + mclapply(1:N, compareOne, mc.cores = nc) + } else { + lapply(1:N, compareOne) + } print("error agghoo vs. cross-validation:") Reduce('+', errors) / N }