3 #' For a given lambda, construct the sets of relevant variables for each cluster.
5 #' @param phiInit an initial estimator for phi (size: p*m*k)
6 #' @param rhoInit an initial estimator for rho (size: m*m*k)
7 #' @param piInit an initial estimator for pi (size : k)
8 #' @param gamInit an initial estimator for gamma
9 #' @param mini minimum number of iterations in EM algorithm
10 #' @param maxi maximum number of iterations in EM algorithm
11 #' @param gamma power in the penalty
12 #' @param glambda grid of regularization parameters
13 #' @param X matrix of regressors
14 #' @param Y matrix of responses
15 #' @param thresh real, threshold to say a variable is relevant, by default = 1e-8
16 #' @param eps threshold to say that EM algorithm has converged
17 #' @param ncores Number or cores for parallel execution (1 to disable)
18 #' @param fast boolean to enable or not the C function call
20 #' @return a list, varying lambda in a grid, with selected (the indices of variables that are selected),
21 #' Rho (the covariance parameter, reparametrized), Pi (the proportion parameter)
24 selectVariables <- function(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma,
25 glambda, X, Y, thresh = 1e-08, eps, ncores = 3, fast)
28 cl <- parallel::makeCluster(ncores, outfile = "")
29 parallel::clusterExport(cl = cl, varlist = c("phiInit", "rhoInit", "gamInit",
30 "mini", "maxi", "glambda", "X", "Y", "thresh", "eps"), envir = environment())
33 # Computation for a fixed lambda
34 computeCoefs <- function(lambda)
36 params <- EMGLLF(phiInit, rhoInit, piInit, gamInit, mini, maxi, gamma, lambda,
42 # selectedVariables: list where element j contains vector of selected variables
44 selectedVariables <- lapply(1:p, function(j) {
45 # from boolean matrix mxk of selected variables obtain the corresponding boolean
46 # m-vector, and finally return the corresponding indices
48 seq_len(m)[apply(abs(params$phi[j, , ]) > thresh, 1, any)]
50 if (any(params$phi[j, , ] > thresh))
57 list(selected = selectedVariables, Rho = params$rho, Pi = params$pi)
60 # For each lambda in the grid, we compute the coefficients
63 parLapply(cl, glambda, computeCoefs)
65 lapply(glambda, computeCoefs)
68 parallel::stopCluster(cl)
70 # Suppress models which are computed twice
71 # sha1_array <- lapply(out, digest::sha1) out[ duplicated(sha1_array) ]
72 selec <- lapply(out, function(model) model$selected)
73 ind_dup <- duplicated(selec)
74 ind_uniq <- which(!ind_dup)
76 for (l in 1:length(ind_uniq))
77 out2[[l]] <- out[[ind_uniq[l]]]