| 1 | #include "sources/neighbors.h" |
| 2 | #include <stdlib.h> |
| 3 | #include <math.h> |
| 4 | #include "sources/utils/algebra.h" |
| 5 | #include <cgds/BufferTop.h> |
| 6 | #include "sources/utils/boolean.h" |
| 7 | |
| 8 | // evaluate distance between M[i,] and M[ii,] |
| 9 | double getDistance(double* M, int i, int ii, int ncol, double alpha, |
| 10 | bool simpleDists) |
| 11 | { |
| 12 | // if simpleDists is ON, it means we are in stage 2 after convex optimization |
| 13 | // ==> use full data, we know that now there are no NA's. |
| 14 | if (simpleDists) |
| 15 | return distance2(M+i*ncol, M+ii*ncol, ncol); |
| 16 | |
| 17 | // get distance for values per year |
| 18 | double dist1 = 0.0; |
| 19 | int valCount = 0; // number of not-NA fields |
| 20 | int nobs = ncol-2; // ncol is 9+2 for our initial dataset (2001 to 2009) |
| 21 | for (int j=0; j<nobs; j++) |
| 22 | { |
| 23 | if (!isnan(M[i*ncol+j]) && !isnan(M[ii*ncol+j])) |
| 24 | { |
| 25 | double diff = M[i*ncol+j] - M[ii*ncol+j]; |
| 26 | dist1 += diff*diff; |
| 27 | valCount++; |
| 28 | } |
| 29 | } |
| 30 | if (valCount > 0) |
| 31 | dist1 /= valCount; |
| 32 | |
| 33 | // get distance for coordinates values |
| 34 | double dist2 = 0.0; |
| 35 | for (int j=nobs; j<ncol; j++) |
| 36 | { |
| 37 | double diff = M[i*ncol+j] - M[ii*ncol+j]; |
| 38 | dist2 += diff*diff; |
| 39 | } |
| 40 | dist2 /= 2.0; //to harmonize with above normalization |
| 41 | if (valCount == 0) |
| 42 | return sqrt(dist2); // no other choice |
| 43 | |
| 44 | //NOTE: adaptive alpha, the more NA's in vector, |
| 45 | // the more geo. coords. are taken into account |
| 46 | alpha = (alpha >= 0.0 ? alpha : (double)valCount/nobs); |
| 47 | return sqrt(alpha*dist1 + (1.0-alpha)*dist2); |
| 48 | } |
| 49 | |
| 50 | // symmetrize neighborhoods lists (augmenting or reducing) |
| 51 | void symmetrizeNeighbors(List** neighborhoods, int nrow, int gmode) |
| 52 | { |
| 53 | IndDist curNeighbI, curNeighbJ; |
| 54 | for (int i=0; i<nrow; i++) |
| 55 | { |
| 56 | ListIterator* iterI = list_get_iterator(neighborhoods[i]); |
| 57 | while (listI_has_data(iterI)) |
| 58 | { |
| 59 | listI_get(iterI, curNeighbI); |
| 60 | // check if neighborhoods[curNeighbI->index] has i |
| 61 | bool reciproc = S_FALSE; |
| 62 | List* neighbsJ = neighborhoods[curNeighbI.index]; |
| 63 | ListIterator* iterJ = list_get_iterator(neighbsJ); |
| 64 | while (listI_has_data(iterJ)) |
| 65 | { |
| 66 | listI_get(iterJ, curNeighbJ); |
| 67 | if (curNeighbJ.index == i) |
| 68 | { |
| 69 | reciproc = S_TRUE; |
| 70 | break; |
| 71 | } |
| 72 | listI_move_next(iterJ); |
| 73 | } |
| 74 | |
| 75 | if (!reciproc) |
| 76 | { |
| 77 | if (gmode == 1) |
| 78 | { |
| 79 | // augmenting: |
| 80 | // add (previously) non-mutual neighbor to neighbsJ |
| 81 | list_insert_back(neighbsJ, i); |
| 82 | } |
| 83 | // test list_size() >= 2 because we don't allow empty neighborhoods |
| 84 | else if (gmode == 0 && list_size(neighborhoods[i]) >= 2) |
| 85 | { |
| 86 | // reducing: |
| 87 | // remove non-mutual neighbor to neighbsI |
| 88 | listI_remove(iterI,BACKWARD); |
| 89 | } |
| 90 | } |
| 91 | listI_move_next(iterI); |
| 92 | listI_destroy(iterJ); |
| 93 | } |
| 94 | listI_destroy(iterI); |
| 95 | } |
| 96 | } |
| 97 | |
| 98 | // restrain neighborhoods: choose one per quadrant (for convex optimization) |
| 99 | void restrainToQuadrants(List** neighborhoods, int nrow, int ncol, double* M) |
| 100 | { |
| 101 | IndDist curNeighbI; |
| 102 | for (int i=0; i<nrow; i++) |
| 103 | { |
| 104 | ListIterator* iter = list_get_iterator(neighborhoods[i]); |
| 105 | // choose one neighbor in each quadrant (if available); |
| 106 | // WARNING: multi-constraint optimization, |
| 107 | // > as close as possible to angle bissectrice |
| 108 | // > not too far from current data point |
| 109 | |
| 110 | // resp. SW,NW,SE,NE "best" neighbors : |
| 111 | int bestIndexInDir[4] = {-1,-1,-1,-1}; |
| 112 | // corresponding "performances" : |
| 113 | double bestPerfInDir[4] = {INFINITY,INFINITY,INFINITY,INFINITY}; |
| 114 | while (listI_has_data(iter)) |
| 115 | { |
| 116 | listI_get(iter, curNeighbI); |
| 117 | // get delta_x and delta_y to know in which quadrant |
| 118 | // we are and then get "index performance" |
| 119 | // ASSUMPTION: all sites are distinct |
| 120 | double deltaX = |
| 121 | M[i*ncol+(ncol-2)] - M[curNeighbI.index*ncol+(ncol-2)]; |
| 122 | double deltaY = |
| 123 | M[i*ncol+(ncol-1)] - M[curNeighbI.index*ncol+(ncol-1)]; |
| 124 | double angle = fabs(atan(deltaY/deltaX)); |
| 125 | // naive combination; [TODO: improve] |
| 126 | double perf = curNeighbI.distance + fabs(angle-M_PI_4); |
| 127 | // map {-1,-1} to 0, {-1,1} to 1 ...etc : |
| 128 | int index = 2*(deltaX>0)+(deltaY>0); |
| 129 | if (perf < bestPerfInDir[index]) |
| 130 | { |
| 131 | bestIndexInDir[index] = curNeighbI.index; |
| 132 | bestPerfInDir[index] = perf; |
| 133 | } |
| 134 | listI_move_next(iter); |
| 135 | } |
| 136 | |
| 137 | // restrain neighborhood to the "best directions" found |
| 138 | listI_reset_head(iter); |
| 139 | while (listI_has_data(iter)) |
| 140 | { |
| 141 | listI_get(iter, curNeighbI); |
| 142 | // test list_size() <= 1 because we don't allow empty neighborhoods |
| 143 | if (list_size(neighborhoods[i]) <= 1 || |
| 144 | curNeighbI.index==bestIndexInDir[0] || |
| 145 | curNeighbI.index==bestIndexInDir[1] || |
| 146 | curNeighbI.index==bestIndexInDir[2] || |
| 147 | curNeighbI.index==bestIndexInDir[3]) |
| 148 | { |
| 149 | // OK, keep it |
| 150 | listI_move_next(iter); |
| 151 | continue; |
| 152 | } |
| 153 | // remove current node |
| 154 | listI_remove(iter,FORWARD); |
| 155 | } |
| 156 | listI_destroy(iter); |
| 157 | } |
| 158 | } |
| 159 | |
| 160 | // Function to obtain neighborhoods. |
| 161 | // NOTE: alpha = weight parameter to compute distances; -1 means "adaptive" |
| 162 | List** getNeighbors_core(double* M, double alpha, int k, int gmode, |
| 163 | bool simpleDists, int nrow, int ncol) |
| 164 | { |
| 165 | // prepare list buffers to get neighborhoods |
| 166 | // (OK for small to moderate values of k) |
| 167 | BufferTop** bufferNeighbs = |
| 168 | (BufferTop**)malloc(nrow*sizeof(BufferTop*)); |
| 169 | for (int i=0; i<nrow; i++) |
| 170 | bufferNeighbs[i] = buffertop_new(IndDist, k, MIN_T, 2); |
| 171 | |
| 172 | // MAIN LOOP |
| 173 | |
| 174 | // for each row in M, find its k nearest neighbors |
| 175 | for (int i=0; i<nrow; i++) |
| 176 | { |
| 177 | // for each potential neighbor... |
| 178 | for (int ii=0; ii<nrow; ii++) |
| 179 | { |
| 180 | if (ii == i) |
| 181 | continue; |
| 182 | |
| 183 | // evaluate distance from M[i,] to M[ii,] |
| 184 | double distance = |
| 185 | getDistance(M, i, ii, ncol, alpha, simpleDists); |
| 186 | |
| 187 | // (try to) add index 'ii' + distance to bufferNeighbs[i] |
| 188 | IndDist id = (IndDist){.index=ii, .distance=distance}; |
| 189 | buffertop_tryadd(bufferNeighbs[i], id, distance); |
| 190 | } |
| 191 | } |
| 192 | |
| 193 | // free buffers and transfer their contents into lists easier to process |
| 194 | List** neighborhoods = (List**)malloc(nrow*sizeof(List*)); |
| 195 | for (int i=0; i<nrow; i++) |
| 196 | { |
| 197 | neighborhoods[i] = buffertop_2list(bufferNeighbs[i]); |
| 198 | buffertop_destroy(bufferNeighbs[i]); |
| 199 | } |
| 200 | free(bufferNeighbs); |
| 201 | |
| 202 | // OPTIONAL MUTUAL KNN |
| 203 | if (gmode==0 || gmode==1) |
| 204 | { |
| 205 | // additional processing to symmetrize neighborhoods (augment or not) |
| 206 | symmetrizeNeighbors(neighborhoods, nrow, gmode); |
| 207 | } |
| 208 | else if (gmode==3) |
| 209 | { |
| 210 | // choose one neighbor per quadrant (for convex optimization) |
| 211 | restrainToQuadrants(neighborhoods, nrow, ncol, M); |
| 212 | } |
| 213 | // nothing to do if gmode==2 (simple assymmetric kNN) |
| 214 | |
| 215 | return neighborhoods; |
| 216 | } |