Commit | Line | Data |
---|---|---|
cbd88fe5 BA |
1 | #' multiRun |
2 | #' | |
2b3a6af5 BA |
3 | #' Estimate N times some parameters, outputs of some list of functions. |
4 | #' This method is thus very generic, allowing typically bootstrap or | |
5 | #' Monte-Carlo estimations of matrices μ or β. | |
6 | #' Passing a list of functions opens the possibility to compare them on a fair | |
7 | #' basis (exact same inputs). It's even possible to compare methods on some | |
8 | #' deterministic design of experiments. | |
cbd88fe5 | 9 | #' |
ab35f610 BA |
10 | #' @name multiRun |
11 | #' | |
cbd88fe5 | 12 | #' @param fargs List of arguments for the estimation functions |
2b3a6af5 | 13 | #' @param estimParams List of nf function(s) to apply on fargs |
cbd88fe5 BA |
14 | #' @param prepareArgs Prepare arguments for the functions inside estimParams |
15 | #' @param N Number of runs | |
16 | #' @param ncores Number of cores for parallel runs (<=1: sequential) | |
cf673dee | 17 | #' @param agg Aggregation method (default: lapply) |
cbd88fe5 BA |
18 | #' @param verbose TRUE to indicate runs + methods numbers |
19 | #' | |
20 | #' @return A list of nf aggregates of N results (matrices). | |
21 | #' | |
22 | #' @examples | |
dfdd811f | 23 | #' \dontrun{ |
cbd88fe5 BA |
24 | #' β <- matrix(c(1,-2,3,1),ncol=2) |
25 | #' | |
2b3a6af5 | 26 | #' # Bootstrap + computeMu, morpheus VS flexmix |
cbd88fe5 BA |
27 | #' io <- generateSampleIO(n=1000, p=1/2, β=β, b=c(0,0), "logit") |
28 | #' μ <- normalize(β) | |
2b3a6af5 | 29 | #' res <- multiRun(list(X=io$X,Y=io$Y,K=2), list( |
cbd88fe5 BA |
30 | #' # morpheus |
31 | #' function(fargs) { | |
32 | #' library(morpheus) | |
33 | #' ind <- fargs$ind | |
2b3a6af5 | 34 | #' computeMu(fargs$X[ind,], fargs$Y[ind], list(K=fargs$K)) |
cbd88fe5 BA |
35 | #' }, |
36 | #' # flexmix | |
37 | #' function(fargs) { | |
38 | #' library(flexmix) | |
39 | #' ind <- fargs$ind | |
2b3a6af5 | 40 | #' K <- fargs$K |
ab35f610 BA |
41 | #' dat <- as.data.frame( cbind(fargs$Y[ind],fargs$X[ind,]) ) |
42 | #' out <- refit( flexmix( cbind(V1, 1 - V1) ~ 0+., data=dat, k=K, | |
cbd88fe5 BA |
43 | #' model=FLXMRglm(family="binomial") ) ) |
44 | #' normalize( matrix(out@@coef[1:(ncol(fargs$X)*K)], ncol=K) ) | |
45 | #' } ), | |
5fc1b9d9 BA |
46 | #' prepareArgs = function(fargs,index) { |
47 | #' if (index == 1) | |
48 | #' fargs$ind <- 1:nrow(fargs$X) | |
49 | #' else | |
50 | #' fargs$ind <- sample(1:nrow(fargs$X),replace=TRUE) | |
cbd88fe5 BA |
51 | #' fargs |
52 | #' }, N=10, ncores=3) | |
53 | #' for (i in 1:2) | |
54 | #' res[[i]] <- alignMatrices(res[[i]], ref=μ, ls_mode="exact") | |
55 | #' | |
2b3a6af5 | 56 | #' # Monte-Carlo + optimParams from X,Y, morpheus VS flexmix |
ab35f610 | 57 | #' res <- multiRun(list(n=1000,p=1/2,β=β,b=c(0,0),link="logit"), list( |
cbd88fe5 BA |
58 | #' # morpheus |
59 | #' function(fargs) { | |
60 | #' library(morpheus) | |
2b3a6af5 BA |
61 | #' K <- fargs$K |
62 | #' μ <- computeMu(fargs$X, fargs$Y, list(K=fargs$K)) | |
63 | #' o <- optimParams(fargs$X, fargs$Y, fargs$K, fargs$link, fargs$M) | |
64 | #' o$run(list(β=μ))$β | |
cbd88fe5 BA |
65 | #' }, |
66 | #' # flexmix | |
67 | #' function(fargs) { | |
68 | #' library(flexmix) | |
2b3a6af5 | 69 | #' K <- fargs$K |
cbd88fe5 | 70 | #' dat <- as.data.frame( cbind(fargs$Y,fargs$X) ) |
ab35f610 | 71 | #' out <- refit( flexmix( cbind(V1, 1 - V1) ~ ., data=dat, k=K, |
cbd88fe5 | 72 | #' model=FLXMRglm(family="binomial") ) ) |
2b3a6af5 | 73 | #' sapply( seq_len(K), function(i) |
ab35f610 | 74 | #' as.double( out@@components[[1]][[i]][2:(1+ncol(fargs$X)),1] ) ) |
cbd88fe5 | 75 | #' } ), |
5fc1b9d9 | 76 | #' prepareArgs = function(fargs,index) { |
cbd88fe5 | 77 | #' library(morpheus) |
ab35f610 BA |
78 | #' io <- generateSampleIO(fargs$n, fargs$p, fargs$β, fargs$b, fargs$link) |
79 | #' fargs$X <- io$X | |
80 | #' fargs$Y <- io$Y | |
81 | #' fargs$K <- ncol(fargs$β) | |
82 | #' fargs$link <- fargs$link | |
83 | #' fargs$M <- computeMoments(io$X,io$Y) | |
cbd88fe5 BA |
84 | #' fargs |
85 | #' }, N=10, ncores=3) | |
86 | #' for (i in 1:2) | |
87 | #' res[[i]] <- alignMatrices(res[[i]], ref=β, ls_mode="exact")} | |
88 | #' @export | |
89 | multiRun <- function(fargs, estimParams, | |
6dd5c2ac | 90 | prepareArgs = function(x,i) x, N=10, ncores=3, agg=lapply, verbose=FALSE) |
cbd88fe5 | 91 | { |
6dd5c2ac BA |
92 | if (!is.list(fargs)) |
93 | stop("fargs: list") | |
94 | # No checks on fargs: supposedly done in estimParams[[i]]() | |
95 | if (!is.list(estimParams)) | |
96 | estimParams = list(estimParams) | |
97 | # Verify that the provided parameters estimations are indeed functions | |
98 | lapply(seq_along(estimParams), function(i) { | |
99 | if (!is.function(estimParams[[i]])) | |
100 | stop("estimParams: list of function(fargs)") | |
101 | }) | |
102 | if (!is.numeric(N) || N < 1) | |
103 | stop("N: positive integer") | |
cbd88fe5 | 104 | |
6dd5c2ac BA |
105 | estimParamAtIndex <- function(index) |
106 | { | |
107 | fargs <- prepareArgs(fargs, index) | |
108 | if (verbose) | |
109 | cat("Run ",index,"\n") | |
110 | lapply(seq_along(estimParams), function(i) { | |
111 | if (verbose) | |
112 | cat(" Method ",i,"\n") | |
113 | out <- estimParams[[i]](fargs) | |
114 | if (is.list(out)) | |
115 | do.call(rbind, out) | |
116 | else | |
117 | out | |
118 | }) | |
119 | } | |
cbd88fe5 | 120 | |
6dd5c2ac BA |
121 | if (ncores > 1) |
122 | { | |
ab35f610 | 123 | cl <- parallel::makeCluster(ncores, outfile="") |
6dd5c2ac | 124 | parallel::clusterExport(cl, c("fargs","verbose"), environment()) |
ab35f610 | 125 | list_res <- parallel::clusterApplyLB(cl, 1:N, estimParamAtIndex) |
6dd5c2ac BA |
126 | parallel::stopCluster(cl) |
127 | } | |
128 | else | |
ab35f610 | 129 | list_res <- lapply(1:N, estimParamAtIndex) |
cbd88fe5 | 130 | |
6dd5c2ac BA |
131 | # De-interlace results: output one list per function |
132 | nf <- length(estimParams) | |
133 | lapply( seq_len(nf), function(i) lapply(seq_len(N), function(j) list_res[[j]][[i]]) ) | |
cbd88fe5 | 134 | } |