| 1 | naive_f <- function(link, M1,M2,M3, p,β,b) |
| 2 | { |
| 3 | d <- length(M1) |
| 4 | K <- length(p) |
| 5 | λ <- sqrt(colSums(β^2)) |
| 6 | |
| 7 | # Compute β x2,3 (self) tensorial products |
| 8 | β2 <- array(0, dim=c(d,d,K)) |
| 9 | β3 <- array(0, dim=c(d,d,d,K)) |
| 10 | for (k in 1:K) |
| 11 | { |
| 12 | for (i in 1:d) |
| 13 | { |
| 14 | for (j in 1:d) |
| 15 | { |
| 16 | β2[i,j,k] = β[i,k]*β[j,k] |
| 17 | for (l in 1:d) |
| 18 | β3[i,j,l,k] = β[i,k]*β[j,k]*β[l,k] |
| 19 | } |
| 20 | } |
| 21 | } |
| 22 | |
| 23 | res <- 0 |
| 24 | for (i in 1:d) |
| 25 | { |
| 26 | term <- 0 |
| 27 | for (k in 1:K) |
| 28 | term <- term + p[k]*.G(link,1,λ[k],b[k])*β[i,k] |
| 29 | res <- res + (term - M1[i])^2 |
| 30 | for (j in 1:d) |
| 31 | { |
| 32 | term <- 0 |
| 33 | for (k in 1:K) |
| 34 | term <- term + p[k]*.G(link,2,λ[k],b[k])*β2[i,j,k] |
| 35 | res <- res + (term - M2[i,j])^2 |
| 36 | for (l in 1:d) |
| 37 | { |
| 38 | term <- 0 |
| 39 | for (k in 1:K) |
| 40 | term <- term + p[k]*.G(link,3,λ[k],b[k])*β3[i,j,l,k] |
| 41 | res <- res + (term - M3[i,j,l])^2 |
| 42 | } |
| 43 | } |
| 44 | } |
| 45 | res |
| 46 | } |
| 47 | |
| 48 | # TODO: understand why delta is so large (should be 10^-6 10^-7 ...) |
| 49 | test_that("naive computation provides the same result as vectorized computations", |
| 50 | { |
| 51 | h <- 1e-7 #for finite-difference tests |
| 52 | n <- 10 |
| 53 | for (dK in list( c(2,2), c(5,3))) |
| 54 | { |
| 55 | d <- dK[1] |
| 56 | K <- dK[2] |
| 57 | |
| 58 | M1 <- runif(d, -1, 1) |
| 59 | M2 <- matrix(runif(d^2, -1, 1), ncol=d) |
| 60 | M3 <- array(runif(d^3, -1, 1), dim=c(d,d,d)) |
| 61 | |
| 62 | for (link in c("logit","probit")) |
| 63 | { |
| 64 | # X and Y are unused here (W not re-computed) |
| 65 | op <- optimParams(X=matrix(runif(n*d),ncol=d), Y=rbinom(n,1,.5), |
| 66 | K, link, M=list(M1,M2,M3)) |
| 67 | op$W <- diag(d + d^2 + d^3) |
| 68 | |
| 69 | for (var in seq_len((2+d)*K-1)) |
| 70 | { |
| 71 | p <- runif(K, 0, 1) |
| 72 | p <- p / sum(p) |
| 73 | β <- matrix(runif(d*K,-5,5),ncol=K) |
| 74 | b <- runif(K, -5, 5) |
| 75 | x <- c(p[1:(K-1)],as.double(β),b) |
| 76 | |
| 77 | # Test functions values (TODO: 1 is way too high) |
| 78 | expect_equal( op$f(x)[1], naive_f(link,M1,M2,M3, p,β,b), tolerance=1 ) |
| 79 | |
| 80 | # Test finite differences ~= gradient values |
| 81 | dir_h <- rep(0, (2+d)*K-1) |
| 82 | dir_h[var] = h |
| 83 | expect_equal( op$grad_f(x)[var], ((op$f(x+dir_h) - op$f(x)) / h)[1], tolerance=0.5 ) |
| 84 | } |
| 85 | } |
| 86 | } |
| 87 | }) |
| 88 | |
| 89 | test_that("W computed in C and in R are the same", |
| 90 | { |
| 91 | tol <- 1e-8 |
| 92 | n <- 10 |
| 93 | for (dK in list( c(2,2))) #, c(5,3))) |
| 94 | { |
| 95 | d <- dK[1] |
| 96 | K <- dK[2] |
| 97 | link <- ifelse(d==2, "logit", "probit") |
| 98 | θ <- list( |
| 99 | p=rep(1/K,K), |
| 100 | β=matrix(runif(d*K),ncol=K), |
| 101 | b=rep(0,K)) |
| 102 | io <- generateSampleIO(n, θ$p, θ$β, θ$b, link) |
| 103 | X <- io$X |
| 104 | Y <- io$Y |
| 105 | dd <- d + d^2 + d^3 |
| 106 | p <- θ$p |
| 107 | β <- θ$β |
| 108 | λ <- sqrt(colSums(β^2)) |
| 109 | b <- θ$b |
| 110 | β2 <- apply(β, 2, function(col) col %o% col) |
| 111 | β3 <- apply(β, 2, function(col) col %o% col %o% col) |
| 112 | M <- c( |
| 113 | β %*% (p * .G(link,1,λ,b)), |
| 114 | β2 %*% (p * .G(link,2,λ,b)), |
| 115 | β3 %*% (p * .G(link,3,λ,b))) |
| 116 | Id <- as.double(diag(d)) |
| 117 | E <- diag(d) |
| 118 | v1 <- Y * X |
| 119 | v2 <- Y * t( apply(X, 1, function(Xi) Xi %o% Xi - Id) ) |
| 120 | v3 <- Y * t( apply(X, 1, function(Xi) { return (Xi %o% Xi %o% Xi |
| 121 | - Reduce('+', lapply(1:d, function(j) |
| 122 | as.double(Xi %o% E[j,] %o% E[j,])), rep(0, d*d*d)) |
| 123 | - Reduce('+', lapply(1:d, function(j) |
| 124 | as.double(E[j,] %o% Xi %o% E[j,])), rep(0, d*d*d)) |
| 125 | - Reduce('+', lapply(1:d, function(j) |
| 126 | as.double(E[j,] %o% E[j,] %o% Xi)), rep(0, d*d*d))) } ) ) |
| 127 | Omega1 <- matrix(0, nrow=dd, ncol=dd) |
| 128 | for (i in 1:n) |
| 129 | { |
| 130 | gi <- t(as.matrix(c(v1[i,], v2[i,], v3[i,]) - M)) |
| 131 | Omega1 <- Omega1 + t(gi) %*% gi / n |
| 132 | } |
| 133 | W <- matrix(0, nrow=dd, ncol=dd) |
| 134 | Omega2 <- matrix( .C("Compute_Omega", |
| 135 | X=as.double(X), Y=as.integer(Y), M=as.double(M), |
| 136 | pnc=as.integer(1), pn=as.integer(n), pd=as.integer(d), |
| 137 | W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) |
| 138 | rg <- range(Omega1 - Omega2) |
| 139 | expect_equal(rg[1], rg[2], tolerance=tol) |
| 140 | } |
| 141 | }) |