| 1 | #include "sources/convexSolver.h" |
| 2 | #include <stdio.h> //to trace LL evolution |
| 3 | #include <stdlib.h> |
| 4 | #include <math.h> |
| 5 | #include "sources/utils/algebra.h" |
| 6 | |
| 7 | // auxiliary to compute log-likelihood + penalty |
| 8 | double computeLogLikelihood( |
| 9 | double** f, double* theta, double** Z, double*** phi, |
| 10 | int* lengthNIix, int** NIix, double alpha, int nrow, int ncol) |
| 11 | { |
| 12 | double LL = 0.0; |
| 13 | |
| 14 | // for each row in data matrix: (one row = observations from 2001 to 2009) |
| 15 | for (int i=0; i<nrow; i++) |
| 16 | { |
| 17 | // theta[i] == -INFINITY if no birds were seen at this site |
| 18 | if (theta[i] != -INFINITY) |
| 19 | { |
| 20 | // for each year from 2001 to 2009: |
| 21 | for (int j=0; j<ncol; j++) |
| 22 | LL += (exp(theta[i] + f[i][j]) - Z[i][j] * (theta[i] + f[i][j])); |
| 23 | } |
| 24 | // add penalty term |
| 25 | double penalty = 0.0; |
| 26 | double Ds = 1.0/lengthNIix[i]; |
| 27 | // lengthNIix[i] == size of the neighborhood of site i |
| 28 | for (int j=0; j<lengthNIix[i]; j++) |
| 29 | { |
| 30 | // compute <phi[s,u] , f[s,] - f[u,]> with u == NIix[i][j] (j-th neighbor of i) |
| 31 | double dotProduct = 0.0; |
| 32 | for (int jj=0; jj<ncol; jj++) |
| 33 | dotProduct += phi[i][NIix[i][j]][jj] * (f[i][jj] - f[NIix[i][j]][jj]); |
| 34 | // normalization by sum of inverses of neighborhoods sizes |
| 35 | double Dsu = Ds + 1.0/lengthNIix[NIix[i][j]]; |
| 36 | penalty += dotProduct / Dsu; |
| 37 | } |
| 38 | LL += alpha * penalty; |
| 39 | } |
| 40 | |
| 41 | return LL; |
| 42 | } |
| 43 | |
| 44 | // compute estimated ("repaired", "smoothed"...) variations from rows of M |
| 45 | // NOTE: geographic coordinates dropped here, since they are unused |
| 46 | Parameters getVarsWithConvexOptim_core( |
| 47 | double* pM, int* lengthNIix, int** NIix, int nrow, int ncol, |
| 48 | double alpha, double h, double epsilon, int maxiter, bool symmNeighbs, bool trace) |
| 49 | { |
| 50 | double EPS = 1e-10; // HACK: some small numerical constant to avoid oddities |
| 51 | |
| 52 | // theta_s = log(average z_st) |
| 53 | double* theta = (double*)calloc(nrow,sizeof(double)); |
| 54 | // NOTE:: Z is 'double' because it is [can be] an average value (of integers) |
| 55 | double** Z = (double**)malloc(nrow*sizeof(double*)); |
| 56 | for (int i=0; i<nrow; i++) |
| 57 | { |
| 58 | Z[i] = (double*)malloc(ncol*sizeof(double)); |
| 59 | for (int j=0; j<ncol; j++) |
| 60 | { |
| 61 | Z[i][j] = pM[i*ncol+j]; |
| 62 | theta[i] += Z[i][j]; |
| 63 | } |
| 64 | // since pM values are assumed to be integers (and ncol not too high ?!), |
| 65 | // the following test may be simplified into (theta[i]==0.0) |
| 66 | if (fabs(theta[i]) < EPS) |
| 67 | theta[i] = -INFINITY; |
| 68 | else |
| 69 | theta[i] = log(theta[i]/ncol); |
| 70 | } |
| 71 | // initialize f to observed variations |
| 72 | double** F = (double**)malloc(nrow*sizeof(double*)); |
| 73 | for (int i=0; i<nrow; i++) |
| 74 | { |
| 75 | F[i] = (double*)calloc(ncol,sizeof(double)); |
| 76 | if (theta[i] != -INFINITY) |
| 77 | { |
| 78 | for (int j=0; j<ncol; j++) |
| 79 | { |
| 80 | if (Z[i][j] > 0.0) |
| 81 | F[i][j] = log(Z[i][j]) - theta[i]; |
| 82 | } |
| 83 | } |
| 84 | } |
| 85 | // phi_s,u = 1/sqrt(ncol) (1 ... 1) [TODO:: costly in memory !] |
| 86 | double invSqrtNcol = 1.0/sqrt(ncol); |
| 87 | double*** phi = (double***)malloc(nrow*sizeof(double**)); |
| 88 | for (int i=0; i<nrow; i++) |
| 89 | { |
| 90 | phi[i] = (double**)malloc(nrow*sizeof(double*)); |
| 91 | for (int ii=0; ii<nrow; ii++) |
| 92 | { |
| 93 | phi[i][ii] = (double*)malloc(ncol*sizeof(double)); |
| 94 | for (int j=0; j<ncol; j++) |
| 95 | phi[i][ii][j] = invSqrtNcol; |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | // initialize log-likelihood |
| 100 | double LL = computeLogLikelihood( |
| 101 | F, theta, Z, phi, lengthNIix, NIix, alpha, nrow, ncol); |
| 102 | double oldLL = -INFINITY; |
| 103 | |
| 104 | /******************* |
| 105 | * START ITERATIONS |
| 106 | *******************/ |
| 107 | |
| 108 | int kounter = 0; // limit iterations count, in case of |
| 109 | while (fabs(LL - oldLL) >= epsilon && kounter++ < maxiter) |
| 110 | { |
| 111 | // gradient descent for theta |
| 112 | for (int i=0; i<nrow; i++) { |
| 113 | if (theta[i] == -INFINITY) |
| 114 | continue; // skip these sites: cannot get information |
| 115 | double sumExpFst = 0.0; |
| 116 | for (int j=0; j<ncol; j++) |
| 117 | sumExpFst += exp(F[i][j]); |
| 118 | double sumZst = 0.0; |
| 119 | for (int j=0; j<ncol; j++) |
| 120 | sumZst += Z[i][j]; |
| 121 | double gradI = exp(theta[i]) * sumExpFst - sumZst; |
| 122 | theta[i] -= h * gradI; |
| 123 | } |
| 124 | |
| 125 | // gradient descent for f |
| 126 | double sumDdivPhi; |
| 127 | for (int i=0; i<nrow; i++) |
| 128 | { |
| 129 | double invDs = 1.0/lengthNIix[i]; |
| 130 | for (int j=0; j<ncol; j++) |
| 131 | { |
| 132 | double gradIJ = - Z[i][j]; |
| 133 | if (theta[i] != -INFINITY) |
| 134 | { |
| 135 | // no theta[i] contribution if nothing observed |
| 136 | gradIJ += exp(theta[i] + F[i][j]); |
| 137 | } |
| 138 | // + sum on neighbors u: s-->u, - sum on neighbors u: u-->s |
| 139 | sumDdivPhi = 0.0; |
| 140 | for (int jj=0; jj<lengthNIix[i]; jj++) |
| 141 | { |
| 142 | double Dsu = invDs + 1.0/lengthNIix[NIix[i][jj]]; |
| 143 | sumDdivPhi += phi[i][NIix[i][jj]][j] / Dsu; |
| 144 | if (symmNeighbs) |
| 145 | { |
| 146 | //shortcut: if symmetric neighborhoods, it's easy to sum on u-->s |
| 147 | sumDdivPhi -= phi[NIix[i][jj]][i][j] / Dsu; |
| 148 | } |
| 149 | } |
| 150 | gradIJ += alpha * sumDdivPhi; |
| 151 | if (!symmNeighbs) |
| 152 | { |
| 153 | // need to remove sum on neighbors u: u-->s, uneasy way. |
| 154 | //TODO: computation is much too costly here; need preprocessing |
| 155 | sumDdivPhi = 0.0; |
| 156 | for (int ii=0; ii<nrow; ii++) |
| 157 | { |
| 158 | //~ if (ii == i) continue; |
| 159 | for (int jj=0; jj<lengthNIix[ii]; jj++) |
| 160 | { |
| 161 | if (NIix[ii][jj] == i) |
| 162 | { |
| 163 | sumDdivPhi += phi[ii][i][j] / (invDs + 1.0/lengthNIix[ii]); |
| 164 | break; //i can only appear once among neighbors of ii |
| 165 | } |
| 166 | } |
| 167 | } |
| 168 | gradIJ -= alpha * sumDdivPhi; |
| 169 | } |
| 170 | F[i][j] -= h * gradIJ; |
| 171 | } |
| 172 | } |
| 173 | |
| 174 | // gradient ascent for phi |
| 175 | for (int i=0; i<nrow; i++) |
| 176 | { |
| 177 | double Ds = 1.0/lengthNIix[i]; |
| 178 | for (int ii=0; ii<nrow; ii++) |
| 179 | { |
| 180 | double Dsu = Ds + 1.0/lengthNIix[ii]; |
| 181 | for (int j=0; j<ncol; j++) |
| 182 | { |
| 183 | double gradI_II_J = alpha * (F[i][j] - F[ii][j]) / Dsu; |
| 184 | phi[i][ii][j] += h * gradI_II_J; |
| 185 | } |
| 186 | // also renormalize to have ||phi_su|| == 1.0 |
| 187 | double normPhi = norm2(phi[i][ii], ncol); |
| 188 | //~ if (normPhi > 1.0) { |
| 189 | if (normPhi > EPS) |
| 190 | { |
| 191 | for (int j=0; j<ncol; j++) |
| 192 | phi[i][ii][j] /= normPhi; |
| 193 | } |
| 194 | } |
| 195 | } |
| 196 | |
| 197 | oldLL = LL; |
| 198 | LL = computeLogLikelihood( |
| 199 | F, theta, Z, phi, lengthNIix, NIix, alpha, nrow, ncol); |
| 200 | if (trace) |
| 201 | printf("%i / LLs: %.0f %.0f\n",kounter,oldLL,LL); // optional trace of LL evolution |
| 202 | } /*** END ITERATIONS ***/ |
| 203 | |
| 204 | // free all local parameters arrays but (theta, F) (used as return value) |
| 205 | for (int i=0; i<nrow; i++) |
| 206 | { |
| 207 | free(Z[i]); |
| 208 | for (int ii=0; ii<nrow; ii++) |
| 209 | free(phi[i][ii]); |
| 210 | free(phi[i]); |
| 211 | } |
| 212 | free(Z); |
| 213 | free(phi); |
| 214 | |
| 215 | Parameters params; |
| 216 | params.f = F; |
| 217 | params.theta = theta; |
| 218 | return params; |
| 219 | } |