| 1 | #' CLAWS: CLustering with wAvelets and Wer distanceS |
| 2 | #' |
| 3 | #' Cluster electricity power curves (or any series of similar nature) by applying a |
| 4 | #' two stage procedure in parallel (see details). |
| 5 | #' Input series must be sampled on the same time grid, no missing values. |
| 6 | #' |
| 7 | #' Summary of the function execution flow: |
| 8 | #' \enumerate{ |
| 9 | #' \item Compute and serialize all contributions, obtained through discrete wavelet |
| 10 | #' decomposition (see Antoniadis & al. [2013]) |
| 11 | #' \item Divide series into \code{ntasks} groups to process in parallel. In each task: |
| 12 | #' \enumerate{ |
| 13 | #' \item iterate the first clustering algorithm on its aggregated outputs, |
| 14 | #' on inputs of size \code{nb_items_clust}\cr |
| 15 | #' -> K1 medoids indices |
| 16 | #' \item optionally, if WER=="mix":\cr |
| 17 | #' a. compute WER distances (K1xK1) between medoids\cr |
| 18 | #' b. apply the 2nd clustering algorithm\cr |
| 19 | #' -> K2 medoids indices |
| 20 | #' } |
| 21 | #' \item Launch a final task on the aggregated outputs of all previous tasks: |
| 22 | #' ntasks*K1 if WER=="end", ntasks*K2 otherwise |
| 23 | #' \item Compute synchrones (sum of series within each final group) |
| 24 | #' } |
| 25 | #' |
| 26 | #' The main argument -- \code{series} -- has a quite misleading name, since it can be |
| 27 | #' either a [big.]matrix, a CSV file, a connection or a user function to retrieve series. |
| 28 | #' When \code{series} is given as a function it must take a single argument, |
| 29 | #' 'indices': integer vector equal to the indices of the curves to retrieve; |
| 30 | #' see SQLite example. |
| 31 | #' WARNING: the return value must be a matrix (in columns), or NULL if no matches. |
| 32 | #' |
| 33 | #' Note: Since we don't make assumptions on initial data, there is a possibility that |
| 34 | #' even when serialized, contributions do not fit in RAM. For example, |
| 35 | #' 30e6 series of length 100,000 would lead to a +4Go contribution matrix. Therefore, |
| 36 | #' it's safer to place these in (binary) files; that's what we do. |
| 37 | #' |
| 38 | #' @param series Access to the N (time-)series, which can be of one of the four |
| 39 | #' following types: |
| 40 | #' \itemize{ |
| 41 | #' \item [big.]matrix: each column contains the (time-ordered) values of one time-serie |
| 42 | #' \item connection: any R connection object providing lines as described above |
| 43 | #' \item character: name of a CSV file containing series in rows (no header) |
| 44 | #' \item function: a custom way to retrieve the curves; it has only one argument: |
| 45 | #' the indices of the series to be retrieved. See SQLite example |
| 46 | #' } |
| 47 | #' @param K1 Number of clusters to be found after stage 1 (K1 << N) |
| 48 | #' @param K2 Number of clusters to be found after stage 2 (K2 << K1) |
| 49 | #' @param nb_series_per_chunk Number of series to retrieve in one batch |
| 50 | #' @param nb_items_clust Number of items in 1st clustering algorithm input |
| 51 | #' @param algoClust1 Clustering algorithm for stage 1. A function which takes (data, K) |
| 52 | #' as argument where data is a matrix in columns and K the desired number of clusters, |
| 53 | #' and outputs K medoids ranks. Default: PAM. |
| 54 | #' @param algoClust2 Clustering algorithm for stage 2. A function which takes (dists, K) |
| 55 | #' as argument where dists is a matrix of distances and K the desired number of clusters, |
| 56 | #' and outputs K medoids ranks. Default: PAM. |
| 57 | #' @param wav_filt Wavelet transform filter; see ?wavelets::wt.filter |
| 58 | #' @param contrib_type Type of contribution: "relative", "logit" or "absolute" (any prefix) |
| 59 | #' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply |
| 60 | #' stage 2 at the end of each task |
| 61 | #' @param smooth_lvl Smoothing level: odd integer, 1 == no smoothing. |
| 62 | #' @param nvoice Number of voices within each octave for CWT computations |
| 63 | #' @param random TRUE (default) for random chunks repartition |
| 64 | #' @param ntasks Number of tasks (parallel iterations to obtain K1 [if WER=="end"] |
| 65 | #' or K2 [if WER=="mix"] medoids); default: 1.\cr |
| 66 | #' Note: ntasks << N (number of series), so that N is "roughly divisible" by ntasks |
| 67 | #' @param ncores_tasks Number of parallel tasks ('1' == sequential tasks) |
| 68 | #' @param ncores_clust Number of parallel clusterings in one task |
| 69 | #' @param sep Separator in CSV input file (if any provided) |
| 70 | #' @param nbytes 4 or 8 bytes to (de)serialize a floating-point number |
| 71 | #' @param endian Endianness for (de)serialization: "little" or "big" |
| 72 | #' @param verbose FALSE: nothing printed; TRUE: some execution traces |
| 73 | #' |
| 74 | #' @return A list: |
| 75 | #' \itemize{ |
| 76 | #' \item medoids: matrix of the final K2 medoids curves |
| 77 | #' \item ranks: corresponding indices in the dataset |
| 78 | #' \item synchrones: sum of series within each final group |
| 79 | #' } |
| 80 | #' |
| 81 | #' @references Clustering functional data using Wavelets [2013]; |
| 82 | #' A. Antoniadis, X. Brossat, J. Cugliari & J.-M. Poggi. |
| 83 | #' Inter. J. of Wavelets, Multiresolution and Information Procesing, |
| 84 | #' vol. 11, No 1, pp.1-30. doi:10.1142/S0219691313500033 |
| 85 | #' |
| 86 | #' @examples |
| 87 | #' \dontrun{ |
| 88 | #' # WER distances computations are too long for CRAN (for now) |
| 89 | #' # Note: on this small example, sequential run is faster |
| 90 | #' |
| 91 | #' # Random series around cos(x,2x,3x)/sin(x,2x,3x) |
| 92 | #' x <- seq(0,50,0.05) |
| 93 | #' L <- length(x) #1001 |
| 94 | #' ref_series <- matrix( c(cos(x),cos(2*x),cos(3*x),sin(x),sin(2*x),sin(3*x)), ncol=6 ) |
| 95 | #' library(wmtsa) |
| 96 | #' series <- do.call( cbind, lapply( 1:6, function(i) |
| 97 | #' do.call(cbind, wmtsa::wavBootstrap(ref_series[,i], n.realization=40)) ) ) |
| 98 | #' # Mix series so that all groups are evenly spread |
| 99 | #' permut <- (0:239)%%6 * 40 + (0:239)%/%6 + 1 |
| 100 | #' series = series[,permut] |
| 101 | #' #dim(series) #c(240,1001) |
| 102 | #' res_ascii <- claws(series, K1=30, K2=6, nb_series_per_chunk=500, |
| 103 | #' nb_items_clust=100, random=FALSE, verbose=TRUE, ncores_clust=1) |
| 104 | #' |
| 105 | #' # Same example, from CSV file |
| 106 | #' csv_file <- tempfile(pattern="epclust_series.csv_") |
| 107 | #' write.table(t(series), csv_file, sep=",", row.names=FALSE, col.names=FALSE) |
| 108 | #' res_csv <- claws(csv_file, 30, 6, 500, 100, random=FALSE, ncores_clust=1) |
| 109 | #' |
| 110 | #' # Same example, from binary file |
| 111 | #' bin_file <- tempfile(pattern="epclust_series.bin_") |
| 112 | #' nbytes <- 8 |
| 113 | #' endian <- "little" |
| 114 | #' binarize(csv_file, bin_file, 500, ",", nbytes, endian) |
| 115 | #' getSeries <- function(indices) getDataInFile(indices, bin_file, nbytes, endian) |
| 116 | #' res_bin <- claws(getSeries, 30, 6, 500, 100, random=FALSE, ncores_clust=1) |
| 117 | #' unlink(csv_file) |
| 118 | #' unlink(bin_file) |
| 119 | #' |
| 120 | #' # Same example, from SQLite database |
| 121 | #' library(DBI) |
| 122 | #' series_db <- dbConnect(RSQLite::SQLite(), "file::memory:") |
| 123 | #' # Prepare data.frame in DB-format |
| 124 | #' n <- ncol(series) |
| 125 | #' times_values <- data.frame( |
| 126 | #' id = rep(1:n,each=L), |
| 127 | #' time = rep( as.POSIXct(1800*(1:L),"GMT",origin="2001-01-01"), n ), |
| 128 | #' value = as.double(series) ) |
| 129 | #' dbWriteTable(series_db, "times_values", times_values) |
| 130 | #' # Fill associative array, map index to identifier |
| 131 | #' indexToID_inDB <- as.character( |
| 132 | #' dbGetQuery(series_db, 'SELECT DISTINCT id FROM times_values')[,"id"] ) |
| 133 | #' serie_length <- as.integer( dbGetQuery(series_db, |
| 134 | #' paste("SELECT COUNT(*) FROM times_values WHERE id == ",indexToID_inDB[1],sep="")) ) |
| 135 | #' getSeries <- function(indices) { |
| 136 | #' indices = indices[ indices <= length(indexToID_inDB) ] |
| 137 | #' if (length(indices) == 0) |
| 138 | #' return (NULL) |
| 139 | #' request <- "SELECT id,value FROM times_values WHERE id in (" |
| 140 | #' for (i in seq_along(indices)) { |
| 141 | #' request <- paste(request, indexToID_inDB[ indices[i] ], sep="") |
| 142 | #' if (i < length(indices)) |
| 143 | #' request <- paste(request, ",", sep="") |
| 144 | #' } |
| 145 | #' request <- paste(request, ")", sep="") |
| 146 | #' df_series <- dbGetQuery(series_db, request) |
| 147 | #' matrix(df_series[,"value"], nrow=serie_length) |
| 148 | #' } |
| 149 | #' res_db <- claws(getSeries, 30, 6, 500, 100, random=FALSE, ncores_clust=1) |
| 150 | #' dbDisconnect(series_db) |
| 151 | #' |
| 152 | #' # All results should be equal: |
| 153 | #' all(res_ascii$ranks == res_csv$ranks |
| 154 | #' & res_ascii$ranks == res_bin$ranks |
| 155 | #' & res_ascii$ranks == res_db$ranks) |
| 156 | #' } |
| 157 | #' @export |
| 158 | claws <- function(series, K1, K2, nb_series_per_chunk, nb_items_clust=5*K1, |
| 159 | algoClust1=function(data,K) cluster::pam(t(data),K,diss=FALSE,pamonce=1)$id.med, |
| 160 | algoClust2=function(dists,K) cluster::pam(dists,K,diss=TRUE,pamonce=1)$id.med, |
| 161 | wav_filt="d8", contrib_type="absolute", WER="end", smooth_lvl=3, nvoice=4, |
| 162 | random=TRUE, ntasks=1, ncores_tasks=1, ncores_clust=3, sep=",", nbytes=4, |
| 163 | endian=.Platform$endian, verbose=FALSE) |
| 164 | { |
| 165 | # Check/transform arguments |
| 166 | if (!is.matrix(series) && !bigmemory::is.big.matrix(series) |
| 167 | && !is.function(series) |
| 168 | && !methods::is(series,"connection") && !is.character(series)) |
| 169 | { |
| 170 | stop("'series': [big]matrix, function, file or valid connection (no NA)") |
| 171 | } |
| 172 | K1 <- .toInteger(K1, function(x) x>=2) |
| 173 | K2 <- .toInteger(K2, function(x) x>=2) |
| 174 | nb_series_per_chunk <- .toInteger(nb_series_per_chunk, function(x) x>=1) |
| 175 | nb_items_clust <- .toInteger(nb_items_clust, function(x) x>K1) |
| 176 | random <- .toLogical(random) |
| 177 | tryCatch({ignored <- wavelets::wt.filter(wav_filt)}, |
| 178 | error=function(e) stop("Invalid wavelet filter; see ?wavelets::wt.filter") ) |
| 179 | ctypes <- c("relative","absolute","logit") |
| 180 | contrib_type <- ctypes[ pmatch(contrib_type,ctypes) ] |
| 181 | if (is.na(contrib_type)) |
| 182 | stop("'contrib_type' in {'relative','absolute','logit'}") |
| 183 | if (WER!="end" && WER!="mix") |
| 184 | stop("'WER': in {'end','mix'}") |
| 185 | random <- .toLogical(random) |
| 186 | ntasks <- .toInteger(ntasks, function(x) x>=1) |
| 187 | ncores_tasks <- .toInteger(ncores_tasks, function(x) x>=1) |
| 188 | ncores_clust <- .toInteger(ncores_clust, function(x) x>=1) |
| 189 | if (!is.character(sep)) |
| 190 | stop("'sep': character") |
| 191 | nbytes <- .toInteger(nbytes, function(x) x==4 || x==8) |
| 192 | verbose <- .toLogical(verbose) |
| 193 | |
| 194 | # Binarize series if it is not a function; the aim is to always use a function, |
| 195 | # to uniformize treatments. An equally good alternative would be to use a file-backed |
| 196 | # bigmemory::big.matrix, but it would break the "all-is-function" pattern. |
| 197 | if (!is.function(series)) |
| 198 | { |
| 199 | if (verbose) |
| 200 | cat("...Serialize time-series (or retrieve past binary file)\n") |
| 201 | series_file <- ".series.epclust.bin" |
| 202 | if (!file.exists(series_file)) |
| 203 | binarize(series, series_file, nb_series_per_chunk, sep, nbytes, endian) |
| 204 | getSeries <- function(inds) getDataInFile(inds, series_file, nbytes, endian) |
| 205 | } |
| 206 | else |
| 207 | getSeries <- series |
| 208 | |
| 209 | # Serialize all computed wavelets contributions into a file |
| 210 | contribs_file <- ".contribs.epclust.bin" |
| 211 | if (verbose) |
| 212 | cat("...Compute contributions and serialize them (or retrieve past binary file)\n") |
| 213 | if (!file.exists(contribs_file)) |
| 214 | { |
| 215 | nb_curves <- binarizeTransform(getSeries, |
| 216 | function(curves) curvesToContribs(curves, wav_filt, contrib_type), |
| 217 | contribs_file, nb_series_per_chunk, nbytes, endian) |
| 218 | } |
| 219 | else |
| 220 | { |
| 221 | # TODO: duplicate from getDataInFile() in de_serialize.R |
| 222 | contribs_size <- file.info(contribs_file)$size #number of bytes in the file |
| 223 | contrib_length <- readBin(contribs_file, "integer", n=1, size=8, endian=endian) |
| 224 | nb_curves <- (contribs_size-8) / (nbytes*contrib_length) |
| 225 | } |
| 226 | getContribs <- function(indices) getDataInFile(indices, contribs_file, nbytes, endian) |
| 227 | |
| 228 | # A few sanity checks: do not continue if too few data available. |
| 229 | if (nb_curves < K2) |
| 230 | stop("Not enough data: less series than final number of clusters") |
| 231 | nb_series_per_task <- round(nb_curves / ntasks) |
| 232 | if (nb_series_per_task < K2) |
| 233 | stop("Too many tasks: less series in one task than final number of clusters") |
| 234 | |
| 235 | # Generate a random permutation of 1:N (if random==TRUE); |
| 236 | # otherwise just use arrival (storage) order. |
| 237 | indices_all <- if (random) sample(nb_curves) else seq_len(nb_curves) |
| 238 | # Split (all) indices into ntasks groups of ~same size |
| 239 | indices_tasks <- lapply(seq_len(ntasks), function(i) { |
| 240 | upper_bound <- ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves ) |
| 241 | indices_all[((i-1)*nb_series_per_task+1):upper_bound] |
| 242 | }) |
| 243 | |
| 244 | parll <- (ncores_tasks > 1) |
| 245 | if (parll && ntasks>1) |
| 246 | { |
| 247 | # Initialize parallel runs: outfile="" allow to output verbose traces in the console |
| 248 | # under Linux. All necessary variables are passed to the workers. |
| 249 | cl <- |
| 250 | if (verbose) |
| 251 | parallel::makeCluster(ncores_tasks, outfile="") |
| 252 | else |
| 253 | parallel::makeCluster(ncores_tasks) |
| 254 | varlist <- c("ncores_clust","verbose", #task 1 & 2 |
| 255 | "K1","getContribs","algoClust1","nb_items_clust") #task 1 |
| 256 | if (WER=="mix") |
| 257 | { |
| 258 | # Add variables for task 2 |
| 259 | varlist <- c(varlist, "K2","getSeries","algoClust2","nb_series_per_chunk", |
| 260 | "smooth_lvl","nvoice","nbytes","endian") |
| 261 | } |
| 262 | parallel::clusterExport(cl, varlist, envir <- environment()) |
| 263 | } |
| 264 | |
| 265 | # This function achieves one complete clustering task, divided in stage 1 + stage 2. |
| 266 | # stage 1: n indices --> clusteringTask1(...) --> K1 medoids (indices) |
| 267 | # stage 2: K1 indices --> K1xK1 WER distances --> clusteringTask2(...) --> K2 medoids, |
| 268 | # where n == N / ntasks, N being the total number of curves. |
| 269 | runTwoStepClustering <- function(inds) |
| 270 | { |
| 271 | # When running in parallel, the environment is blank: we need to load the required |
| 272 | # packages, and pass useful variables. |
| 273 | if (parll && ntasks>1) |
| 274 | require("epclust", quietly=TRUE) |
| 275 | indices_medoids <- clusteringTask1(inds, getContribs, K1, algoClust1, |
| 276 | nb_items_clust, ncores_clust, verbose) |
| 277 | if (WER=="mix") |
| 278 | { |
| 279 | indices_medoids <- clusteringTask2(indices_medoids, getSeries, K2, algoClust2, |
| 280 | nb_series_per_chunk,smooth_lvl,nvoice,nbytes,endian,ncores_clust,verbose) |
| 281 | } |
| 282 | indices_medoids |
| 283 | } |
| 284 | |
| 285 | if (verbose) |
| 286 | { |
| 287 | message <- paste("...Run ",ntasks," x stage 1", sep="") |
| 288 | if (WER=="mix") |
| 289 | message <- paste(message," + stage 2", sep="") |
| 290 | cat(paste(message,"\n", sep="")) |
| 291 | } |
| 292 | |
| 293 | # As explained above, we obtain after all runs ntasks*[K1 or K2] medoids indices, |
| 294 | # depending whether WER=="end" or "mix", respectively. |
| 295 | indices_medoids_all <- |
| 296 | if (parll && ntasks>1) |
| 297 | unlist( parallel::parLapply(cl, indices_tasks, runTwoStepClustering) ) |
| 298 | else |
| 299 | unlist( lapply(indices_tasks, runTwoStepClustering) ) |
| 300 | |
| 301 | if (parll && ntasks>1) |
| 302 | parallel::stopCluster(cl) |
| 303 | |
| 304 | # For the last stage, ncores_tasks*(ncores_clusts+1) cores should be available: |
| 305 | # - ntasks for level 1 parallelism |
| 306 | # - ntasks*ncores_clust for level 2 parallelism, |
| 307 | # but since an extension MPI <--> tasks / OpenMP <--> sub-tasks is on the way, |
| 308 | # it's better to just re-use ncores_clust |
| 309 | ncores_last_stage <- ncores_clust |
| 310 | |
| 311 | # Run last clustering tasks to obtain only K2 medoids indices |
| 312 | if (verbose) |
| 313 | cat("...Run final // stage 1 + stage 2\n") |
| 314 | indices_medoids <- clusteringTask1(indices_medoids_all, getContribs, K1, algoClust1, |
| 315 | nb_items_clust, ncores_tasks*ncores_clust, verbose) |
| 316 | |
| 317 | indices_medoids <- clusteringTask2(indices_medoids, getSeries, K2, algoClust2, |
| 318 | nb_series_per_chunk,smooth_lvl,nvoice,nbytes,endian,ncores_last_stage,verbose) |
| 319 | |
| 320 | # Compute synchrones, that is to say the cumulated power consumptions for each of the K2 |
| 321 | # final groups. |
| 322 | medoids <- getSeries(indices_medoids) |
| 323 | synchrones <- computeSynchrones(medoids, getSeries, nb_curves, nb_series_per_chunk, |
| 324 | ncores_last_stage, verbose) |
| 325 | |
| 326 | # NOTE: no need to use big.matrix here, since there are only K2 << K1 << N remaining curves |
| 327 | list("medoids"=medoids, "ranks"=indices_medoids, "synchrones"=synchrones) |
| 328 | } |