Commit | Line | Data |
---|---|---|
c5946158 BA |
1 | #' @title R6 class with agghoo functions fit() and predict(). |
2 | #' | |
3 | #' @description | |
4 | #' Class encapsulating the methods to run to obtain the best predictor | |
5 | #' from the list of models (see 'Model' class). | |
6 | #' | |
d9a139b5 BA |
7 | #' @importFrom R6 R6Class |
8 | #' | |
c5946158 | 9 | #' @export |
cca5f1c6 | 10 | AgghooCV <- R6::R6Class("AgghooCV", |
c5946158 | 11 | public = list( |
cca5f1c6 | 12 | #' @description Create a new AgghooCV object. |
c5946158 BA |
13 | #' @param data Matrix or data.frame |
14 | #' @param target Vector of targets (generally numeric or factor) | |
a7ec4f8a BA |
15 | #' @param task "regression" or "classification". |
16 | #' Default: classification if target not numeric. | |
c5946158 | 17 | #' @param gmodel Generic model returning a predictive function |
a7ec4f8a | 18 | #' Default: tree if mixed data, knn/ppr otherwise. |
504afaad | 19 | #' @param loss Function assessing the error of a prediction |
a7ec4f8a | 20 | #' Default: error rate or mean(abs(error)). |
afa67660 | 21 | initialize = function(data, target, task, gmodel, loss) { |
c5946158 BA |
22 | private$data <- data |
23 | private$target <- target | |
24 | private$task <- task | |
25 | private$gmodel <- gmodel | |
504afaad | 26 | private$loss <- loss |
c5946158 BA |
27 | }, |
28 | #' @description Fit an agghoo model. | |
43a6578d BA |
29 | #' @param CV List describing cross-validation to run. Slots: \cr |
30 | #' - type: 'vfold' or 'MC' for Monte-Carlo (default: MC) \cr | |
31 | #' - V: number of runs (default: 10) \cr | |
c5946158 | 32 | #' - test_size: percentage of data in the test dataset, for MC |
43a6578d | 33 | #' (irrelevant for V-fold). Default: 0.2. \cr |
c5946158 | 34 | #' - shuffle: wether or not to shuffle data before V-fold. |
afa67660 BA |
35 | #' Irrelevant for Monte-Carlo; default: TRUE \cr |
36 | #' Default (if NULL): type="MC", V=10, test_size=0.2 | |
37 | fit = function(CV = NULL) { | |
38 | CV <- checkCV(CV) | |
c5946158 | 39 | n <- nrow(private$data) |
504afaad | 40 | shuffle_inds <- NULL |
c5946158 BA |
41 | if (CV$type == "vfold" && CV$shuffle) |
42 | shuffle_inds <- sample(n, n) | |
504afaad BA |
43 | # Result: list of V predictive models (+ parameters for info) |
44 | private$pmodels <- list() | |
45 | for (v in seq_len(CV$V)) { | |
46 | # Prepare train / test data and target, from full dataset. | |
47 | # dataHO: "data Hold-Out" etc. | |
afa67660 BA |
48 | test_indices <- get_testIndices(n, CV, v, shuffle_inds) |
49 | d <- splitTrainTest(private$data, private$target, test_indices) | |
504afaad BA |
50 | best_model <- NULL |
51 | best_error <- Inf | |
52 | for (p in seq_len(private$gmodel$nmodels)) { | |
afa67660 BA |
53 | model_pred <- private$gmodel$get(d$dataTrain, d$targetTrain, p) |
54 | prediction <- model_pred(d$dataTest) | |
55 | error <- private$loss(prediction, d$targetTest) | |
504afaad BA |
56 | if (error <= best_error) { |
57 | newModel <- list(model=model_pred, param=private$gmodel$getParam(p)) | |
58 | if (error == best_error) | |
59 | best_model[[length(best_model)+1]] <- newModel | |
60 | else { | |
61 | best_model <- list(newModel) | |
62 | best_error <- error | |
63 | } | |
c5946158 BA |
64 | } |
65 | } | |
504afaad BA |
66 | # Choose a model at random in case of ex-aequos |
67 | private$pmodels[[v]] <- best_model[[ sample(length(best_model),1) ]] | |
c5946158 BA |
68 | } |
69 | }, | |
70 | #' @description Predict an agghoo model (after calling fit()) | |
71 | #' @param X Matrix or data.frame to predict | |
504afaad | 72 | predict = function(X) { |
d9a139b5 BA |
73 | if (!is.matrix(X) && !is.data.frame(X)) |
74 | stop("X: matrix or data.frame") | |
504afaad | 75 | if (!is.list(private$pmodels)) { |
c5946158 | 76 | print("Please call $fit() method first") |
504afaad | 77 | return (invisible(NULL)) |
c5946158 | 78 | } |
504afaad | 79 | V <- length(private$pmodels) |
afa67660 BA |
80 | oneLineX <- X[1,] |
81 | if (is.matrix(X)) | |
82 | # HACK: R behaves differently with data frames and matrices. | |
83 | oneLineX <- t(as.matrix(oneLineX)) | |
7b5193cd | 84 | if (length(private$pmodels[[1]]$model(oneLineX)) >= 2) |
504afaad BA |
85 | # Soft classification: |
86 | return (Reduce("+", lapply(private$pmodels, function(m) m$model(X))) / V) | |
c5946158 | 87 | n <- nrow(X) |
504afaad BA |
88 | all_predictions <- as.data.frame(matrix(nrow=n, ncol=V)) |
89 | for (v in 1:V) | |
90 | all_predictions[,v] <- private$pmodels[[v]]$model(X) | |
c5946158 | 91 | if (private$task == "regression") |
504afaad | 92 | # Easy case: just average each row |
1fdc3c34 | 93 | return (rowMeans(all_predictions)) |
504afaad BA |
94 | # "Hard" classification: |
95 | apply(all_predictions, 1, function(row) { | |
96 | t <- table(row) | |
97 | # Next lines in case of ties (broken at random) | |
98 | tmax <- max(t) | |
99 | sample( names(t)[which(t == tmax)], 1 ) | |
100 | }) | |
101 | }, | |
102 | #' @description Return the list of V best parameters (after calling fit()) | |
103 | getParams = function() { | |
104 | lapply(private$pmodels, function(m) m$param) | |
c5946158 BA |
105 | } |
106 | ), | |
107 | private = list( | |
d9a139b5 BA |
108 | data = NULL, |
109 | target = NULL, | |
110 | task = NULL, | |
111 | gmodel = NULL, | |
504afaad | 112 | loss = NULL, |
afa67660 | 113 | pmodels = NULL |
c5946158 BA |
114 | ) |
115 | ) |