From: Benjamin Auder Date: Mon, 27 Mar 2017 01:22:55 +0000 (+0200) Subject: draft Neighbors2; fix bug in Neighbors1 X-Git-Url: https://git.auder.net/images/pieces/img/R.css?a=commitdiff_plain;h=5c49f6cecd547358b327e9363e62bcc8219e9e33;p=talweg.git draft Neighbors2; fix bug in Neighbors1 --- diff --git a/pkg/R/F_Neighbors.R b/pkg/R/F_Neighbors.R index 5b1f826..600c5c8 100644 --- a/pkg/R/F_Neighbors.R +++ b/pkg/R/F_Neighbors.R @@ -103,7 +103,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", # Require at least half of non-NA common values to compute the distance if ( !any( is.na(delta) ) ) distances2[i] = mean(delta^2) - } + Centered} sd_dist = sd(distances2) if (sd_dist < .Machine$double.eps) @@ -171,7 +171,7 @@ NeighborsForecaster = R6::R6Class("NeighborsForecaster", prediction = rep(0, horizon) for (i in seq_along(fdays)) - prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon] + prediction = prediction + similarities[i] * data$getCenteredSerie(fdays[i]+1)[1:horizon] prediction = prediction / sum(similarities, na.rm=TRUE) if (final_call) diff --git a/pkg/R/F_Neighbors2.R b/pkg/R/F_Neighbors2.R new file mode 100644 index 0000000..e6addde --- /dev/null +++ b/pkg/R/F_Neighbors2.R @@ -0,0 +1,149 @@ +#' @include Forecaster.R +#' +#' Neighbors2 Forecaster +#' +#' Predict tomorrow as a weighted combination of "futures of the past" days. +#' Inherits \code{\link{Forecaster}} +#' +Neighbors2Forecaster = R6::R6Class("Neighbors2Forecaster", + inherit = Forecaster, + + public = list( + predictShape = function(data, today, memory, horizon, ...) + { + # (re)initialize computed parameters + private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) + + # Do not forecast on days with NAs (TODO: softer condition...) + if (any(is.na(data$getCenteredSerie(today)))) + return (NA) + + # Determine indices of no-NAs days followed by no-NAs tomorrows + fdays = getNoNA2(data, max(today-memory,1), today-1) + + # Get optional args + kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" + if (hasArg(h_window)) + { + return ( private$.predictShapeAux(data, + fdays, today, horizon, list(...)$h_window, kernel, TRUE) ) + } + + + # Indices of similar days for cross-validation; TODO: 45 = magic number + # TODO: ici faut une sorte de "same_season==TRUE" --> mois similaires epandage + sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE) + + + # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days + errorOnLastNdays = function(h, kernel) + { + error = 0 + nb_jours = 0 + for (i in intersect(fdays,sdays)) + { + # mix_strategy is never used here (simtype != "mix"), therefore left blank + prediction = private$.predictShapeAux(data, fdays, i, horizon, h, kernel, FALSE) + if (!is.na(prediction[1])) + { + nb_jours = nb_jours + 1 + error = error + + mean((data$getSerie(i+1)[1:horizon] - prediction)^2) + } + } + return (error / nb_jours) + } + + # h :: only for endo in this variation + h_best_endo = optimize(errorOnLastNdays, c(0,10), kernel=kernel)$minimum + + return (private$.predictShapeAux(data, fdays, today, horizon, h_best, kernel, TRUE)) + } + ), + private = list( + # Precondition: "today" is full (no NAs) + .predictShapeAux = function(data, fdays, today, horizon, h, kernel, final_call) + { + fdays = fdays[ fdays < today ] + # TODO: 3 = magic number + if (length(fdays) < 3) + return (NA) + + # ENDO:: Distances from last observed day to days in the past + distances2 = rep(NA, length(fdays)) + for (i in seq_along(fdays)) + { + delta = data$getSerie(today) - data$getSerie(fdays[i]) + # Require at least half of non-NA common values to compute the distance + if ( !any( is.na(delta) ) ) + distances2[i] = mean(delta^2) + } + + sd_dist = sd(distances2) + if (sd_dist < .Machine$double.eps) + { +# warning("All computed distances are very close: stdev too small") + sd_dist = 1 #mostly for tests... FIXME: + } + simils_endo = + if (kernel=="Gauss") + exp(-distances2/(sd_dist*h_endo^2)) + else + { + # Epanechnikov + u = 1 - distances2/(sd_dist*h_endo^2) + u[abs(u)>1] = 0. + u + } + + # EXOGENS: distances computations are enough + # TODO: search among similar concentrations....... at this stage ?! + M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) ) + M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) + for (i in seq_along(fdays)) + M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) + + sigma = cov(M) #NOTE: robust covariance is way too slow + sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed? + + # Distances from last observed day to days in the past + distances2 = rep(NA, nrow(M)-1) + for (i in 2:nrow(M)) + { + delta = M[1,] - M[i,] + distances2[i-1] = delta %*% sigma_inv %*% delta + } + + ppv <- sort(distances2, index.return=TRUE)$ix[1:10] #.............. +#PPV pour endo ? + + similarities = + if (simtype == "exo") + simils_exo + else if (simtype == "endo") + simils_endo + else #mix + simils_endo * simils_exo + + prediction = rep(0, horizon) + for (i in seq_along(fdays)) + prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon] + prediction = prediction / sum(similarities, na.rm=TRUE) + + if (final_call) + { + private$.params$weights <- similarities + private$.params$indices <- fdays + private$.params$window <- + if (simtype=="endo") + h_endo + else if (simtype=="exo") + h_exo + else #mix + c(h_endo,h_exo) + } + + return (prediction) + } + ) +)