Commit | Line | Data |
---|---|---|
c5946158 BA |
1 | #' @title R6 class with agghoo functions fit() and predict(). |
2 | #' | |
3 | #' @description | |
4 | #' Class encapsulating the methods to run to obtain the best predictor | |
5 | #' from the list of models (see 'Model' class). | |
6 | #' | |
7 | #' @export | |
cca5f1c6 | 8 | AgghooCV <- R6::R6Class("AgghooCV", |
c5946158 | 9 | public = list( |
cca5f1c6 | 10 | #' @description Create a new AgghooCV object. |
c5946158 BA |
11 | #' @param data Matrix or data.frame |
12 | #' @param target Vector of targets (generally numeric or factor) | |
13 | #' @param task "regression" or "classification" | |
14 | #' @param gmodel Generic model returning a predictive function | |
15 | #' @param quality Function assessing the quality of a prediction; | |
16 | #' quality(y1, y2) --> real number | |
17 | initialize = function(data, target, task, gmodel, quality = NA) { | |
18 | private$data <- data | |
19 | private$target <- target | |
20 | private$task <- task | |
21 | private$gmodel <- gmodel | |
22 | if (is.na(quality)) { | |
23 | quality <- function(y1, y2) { | |
24 | # NOTE: if classif output is a probability matrix, adapt. | |
25 | if (task == "classification") | |
26 | mean(y1 == y2) | |
27 | else | |
28 | atan(1.0 / (mean(abs(y1 - y2) + 0.01))) #experimental... | |
29 | } | |
30 | } | |
31 | private$quality <- quality | |
32 | }, | |
33 | #' @description Fit an agghoo model. | |
34 | #' @param CV List describing cross-validation to run. Slots: | |
35 | #' - type: 'vfold' or 'MC' for Monte-Carlo (default: MC) | |
36 | #' - V: number of runs (default: 10) | |
37 | #' - test_size: percentage of data in the test dataset, for MC | |
38 | #' (irrelevant for V-fold). Default: 0.2. | |
39 | #' - shuffle: wether or not to shuffle data before V-fold. | |
40 | #' Irrelevant for Monte-Carlo; default: TRUE | |
41 | #' @param mode "agghoo" or "standard" (for usual cross-validation) | |
42 | fit = function( | |
43 | CV = list(type = "MC", | |
44 | V = 10, | |
45 | test_size = 0.2, | |
46 | shuffle = TRUE), | |
47 | mode="agghoo" | |
48 | ) { | |
49 | if (!is.list(CV)) | |
50 | stop("CV: list of type, V, [test_size], [shuffle]") | |
51 | n <- nrow(private$data) | |
52 | shuffle_inds <- NA | |
53 | if (CV$type == "vfold" && CV$shuffle) | |
54 | shuffle_inds <- sample(n, n) | |
55 | if (mode == "agghoo") { | |
56 | vperfs <- list() | |
57 | for (v in 1:CV$V) { | |
58 | test_indices <- private$get_testIndices(CV, v, n, shuffle_inds) | |
59 | vperf <- private$get_modelPerf(test_indices) | |
60 | vperfs[[v]] <- vperf | |
61 | } | |
62 | private$run_res <- vperfs | |
63 | } | |
64 | else { | |
65 | # Standard cross-validation | |
66 | best_index = 0 | |
67 | best_perf <- -1 | |
68 | for (p in 1:private$gmodel$nmodels) { | |
69 | tot_perf <- 0 | |
70 | for (v in 1:CV$V) { | |
71 | test_indices <- private$get_testIndices(CV, v, n, shuffle_inds) | |
72 | perf <- private$get_modelPerf(test_indices, p) | |
73 | tot_perf <- tot_perf + perf / CV$V | |
74 | } | |
75 | if (tot_perf > best_perf) { | |
76 | # TODO: if ex-aequos: models list + choose at random | |
77 | best_index <- p | |
78 | best_perf <- tot_perf | |
79 | } | |
80 | } | |
81 | best_model <- private$gmodel$get(private$data, private$target, best_index) | |
82 | private$run_res <- list( list(model=best_model, perf=best_perf) ) | |
83 | } | |
84 | }, | |
85 | #' @description Predict an agghoo model (after calling fit()) | |
86 | #' @param X Matrix or data.frame to predict | |
87 | #' @param weight "uniform" (default) or "quality" to weight votes or | |
88 | #' average models performances (TODO: bad idea?!) | |
89 | predict = function(X, weight="uniform") { | |
90 | if (!is.list(private$run_res) || is.na(private$run_res)) { | |
91 | print("Please call $fit() method first") | |
92 | return | |
93 | } | |
94 | V <- length(private$run_res) | |
95 | if (V == 1) | |
96 | # Standard CV: | |
97 | return (private$run_res[[1]]$model(X)) | |
98 | # Agghoo: | |
99 | if (weight == "uniform") | |
100 | weights <- rep(1 / V, V) | |
101 | else { | |
102 | perfs <- sapply(private$run_res, function(item) item$perf) | |
103 | perfs[perfs < 0] <- 0 #TODO: show a warning (with count of < 0...) | |
104 | total_weight <- sum(perfs) #TODO: error if total_weight == 0 | |
105 | weights <- perfs / total_weight | |
106 | } | |
107 | n <- nrow(X) | |
108 | # TODO: detect if output = probs matrix for classif (in this case, adapt?) | |
109 | # prediction agghoo "probabiliste" pour un nouveau x : | |
110 | # argMax({ predict(m_v, x), v in 1..V }) ... | |
111 | if (private$task == "classification") { | |
112 | votes <- as.list(rep(NA, n)) | |
113 | parse_numeric <- FALSE | |
114 | } | |
115 | else | |
116 | preds <- matrix(0, nrow=n, ncol=V) | |
117 | for (v in 1:V) { | |
118 | predictions <- private$run_res[[v]]$model(X) | |
119 | if (private$task == "regression") | |
120 | preds <- cbind(preds, weights[v] * predictions) | |
121 | else { | |
122 | if (!parse_numeric && is.numeric(predictions)) | |
123 | parse_numeric <- TRUE | |
124 | for (i in 1:n) { | |
125 | if (!is.list(votes[[i]])) | |
126 | votes[[i]] <- list() | |
127 | index <- as.character(predictions[i]) | |
128 | if (is.null(votes[[i]][[index]])) | |
129 | votes[[i]][[index]] <- 0 | |
130 | votes[[i]][[index]] <- votes[[i]][[index]] + weights[v] | |
131 | } | |
132 | } | |
133 | } | |
134 | if (private$task == "regression") | |
135 | return (rowSums(preds)) | |
136 | res <- c() | |
137 | for (i in 1:n) { | |
138 | # TODO: if ex-aequos, random choice... | |
139 | ind_max <- which.max(unlist(votes[[i]])) | |
140 | pred_class <- names(votes[[i]])[ind_max] | |
141 | if (parse_numeric) | |
142 | pred_class <- as.numeric(pred_class) | |
143 | res <- c(res, pred_class) | |
144 | } | |
145 | res | |
146 | } | |
147 | ), | |
148 | private = list( | |
149 | data = NA, | |
150 | target = NA, | |
151 | task = NA, | |
152 | gmodel = NA, | |
153 | quality = NA, | |
154 | run_res = NA, | |
155 | get_testIndices = function(CV, v, n, shuffle_inds) { | |
156 | if (CV$type == "vfold") { | |
157 | first_index = round((v-1) * n / CV$V) + 1 | |
158 | last_index = round(v * n / CV$V) | |
159 | test_indices = first_index:last_index | |
160 | if (CV$shuffle) | |
161 | test_indices <- shuffle_inds[test_indices] | |
162 | } | |
163 | else | |
164 | test_indices = sample(n, round(n * CV$test_size)) | |
165 | test_indices | |
166 | }, | |
167 | get_modelPerf = function(test_indices, p=0) { | |
168 | getOnePerf <- function(p) { | |
169 | model_pred <- private$gmodel$get(dataHO, targetHO, p) | |
170 | prediction <- model_pred(testX) | |
171 | perf <- private$quality(prediction, testY) | |
172 | list(model=model_pred, perf=perf) | |
173 | } | |
174 | dataHO <- private$data[-test_indices,] | |
175 | testX <- private$data[test_indices,] | |
176 | targetHO <- private$target[-test_indices] | |
177 | testY <- private$target[test_indices] | |
178 | if (p >= 1) | |
179 | # Standard CV: one model at a time | |
180 | return (getOnePerf(p)$perf) | |
181 | # Agghoo: loop on all models | |
182 | best_model = NULL | |
183 | best_perf <- -1 | |
184 | for (p in 1:private$gmodel$nmodels) { | |
185 | model_perf <- getOnePerf(p) | |
186 | if (model_perf$perf > best_perf) { | |
187 | # TODO: if ex-aequos: models list + choose at random | |
188 | best_model <- model_perf$model | |
189 | best_perf <- model_perf$perf | |
190 | } | |
191 | } | |
192 | list(model=best_model, perf=best_perf) | |
193 | } | |
194 | ) | |
195 | ) |