3 test_that("computeSynchrones behave as expected",
5 # Generate 300 sinusoïdal series of 3 kinds: all series of indices == 0 mod 3 are the same
6 # (plus noise), all series of indices == 1 mod 3 are the same (plus noise) ...
13 s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] )
18 series = matrix(nrow=L, ncol=n)
20 series[,i] = s[[I(i,K)]] + rnorm(L,sd=0.01)
22 getRefSeries = function(indices) {
23 indices = indices[indices <= n]
24 if (length(indices)>0) as.matrix(series[,indices]) else NULL
27 synchrones = computeSynchrones(bigmemory::as.big.matrix(cbind(s1,s2,s3)), getRefSeries,
28 n, 100, verbose=TRUE, parll=FALSE)
30 expect_equal(dim(synchrones), c(L,K))
33 # Synchrones are (for each medoid) sums of closest curves.
34 # Here, we expect exactly 100 curves of each kind to be assigned respectively to
35 # synchrone 1, 2 and 3 => division by 100 should be very close to the ref curve
36 expect_equal(synchrones[,i]/100, s[[i]], tolerance=0.01)
40 test_that("Helper function to spread indices work properly",
44 # bigger nb_per_set than length(indices)
45 expect_equal(epclust:::.spreadIndices(indices,500), list(indices))
47 # nb_per_set == length(indices)
48 expect_equal(epclust:::.spreadIndices(indices,400), list(indices))
50 # length(indices) %% nb_per_set == 0
51 expect_equal(epclust:::.spreadIndices(indices,200),
52 c( list(indices[1:200]), list(indices[201:400]) ))
53 expect_equal(epclust:::.spreadIndices(indices,100),
54 c( list(indices[1:100]), list(indices[101:200]),
55 list(indices[201:300]), list(indices[301:400]) ))
57 # length(indices) / nb_per_set == 1, length(indices) %% nb_per_set == 100
58 expect_equal(epclust:::.spreadIndices(indices,300), list(indices))
59 # length(indices) / nb_per_set == 2, length(indices) %% nb_per_set == 42
60 repartition <- epclust:::.spreadIndices(indices,179)
61 expect_equal(length(repartition), 2)
62 expect_equal(length(repartition[[1]]), 179 + 21)
63 expect_equal(length(repartition[[1]]), 179 + 21)
66 test_that("clusteringTask1 behave as expected",
68 # Generate 60 reference sinusoïdal series (medoids to be found),
69 # and sample 900 series around them (add a small noise)
72 L = length(x) #96 1/4h
74 s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
75 series = matrix(nrow=L, ncol=n)
77 series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
79 getSeries = function(indices) {
80 indices = indices[indices <= n]
81 if (length(indices)>0) as.matrix(series[,indices]) else NULL
86 getContribs = function(indices) curvesToContribs(series[,indices],wf,ctype)
88 require("cluster", quietly=TRUE)
89 algoClust1 = function(contribs,K) cluster::pam(t(contribs),K,diss=FALSE)$id.med
90 indices1 = clusteringTask1(1:n, getContribs, K1, algoClust1, 75, verbose=TRUE, parll=FALSE)
91 medoids_K1 = getSeries(indices1)
93 expect_equal(dim(medoids_K1), c(L,K1))
94 # Not easy to evaluate result: at least we expect it to be better than random selection of
95 # medoids within initial series
96 distor_good = computeDistortion(series, medoids_K1)
98 expect_lte( distor_good, computeDistortion(series,series[,sample(1:n, K1)]) )
101 test_that("clusteringTask2 behave as expected",
103 skip("Unexplained failure")
105 # Same 60 reference sinusoïdal series than in clusteringTask1 test,
106 # but this time we consider them as medoids - skipping stage 1
107 # Here also we sample 900 series around the 60 "medoids"
110 L = length(x) #96 1/4h
113 #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)}
114 s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) )
115 series = matrix(nrow=L, ncol=n)
116 for (i in seq_len(n))
117 series[,i] = s[[I(i,K1)]] + rnorm(L,sd=0.01)
119 getRefSeries = function(indices) {
120 indices = indices[indices <= n]
121 if (length(indices)>0) as.matrix(series[,indices]) else NULL
124 # Perfect situation: all medoids "after stage 1" are good.
125 medoids_K1 = bigmemory::as.big.matrix( sapply( 1:K1, function(i) s[[I(i,K1)]] ) )
126 algoClust2 = function(dists,K) cluster::pam(dists,K,diss=TRUE)$id.med
127 medoids_K2 = clusteringTask2(medoids_K1, K2, algoClust2, getRefSeries,
128 n, 75, 4, 8, "little", verbose=TRUE, parll=FALSE)
130 expect_equal(dim(medoids_K2), c(L,K2))
131 # Not easy to evaluate result: at least we expect it to be better than random selection of
132 # synchrones within 1...K1 (from where distances computations + clustering was run)
133 synchrones = computeSynchrones(medoids_K1,getRefSeries,n,75,verbose=FALSE,parll=FALSE)
134 distor_good = computeDistortion(synchrones, medoids_K2)
136 expect_lte( distor_good, computeDistortion(synchrones, synchrones[,sample(1:K1,3)]) )