fix typo, add some TODO
[epclust.git] / epclust / R / clustering.R
1 #' @name clustering
2 #' @rdname clustering
3 #' @aliases clusteringTask1 computeClusters1 computeClusters2
4 #'
5 #' @title Two-stage clustering, withing one task (see \code{claws()})
6 #'
7 #' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in
8 #' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed
9 #' through discrete wavelets coefficients).
10 #' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones
11 #' and then WER distances computations, before applying the clustering algorithm.
12 #' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic
13 #' clustering procedures respectively for stage 1 and 2. The former applies the
14 #' clustering algorithm (PAM) on a contributions matrix, while the latter clusters
15 #' a chunk of series inside one task (~max nb_series_per_chunk)
16 #'
17 #' @param indices Range of series indices to cluster in parallel (initial data)
18 #' @param getContribs Function to retrieve contributions from initial series indices:
19 #' \code{getContribs(indices)} outpus a contributions matrix
20 #' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()})
21 #' @param distances matrix of K1 x K1 (WER) distances between synchrones
22 #' @inheritParams computeSynchrones
23 #' @inheritParams claws
24 #'
25 #' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the
26 #' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus
27 #' \code{computeClusters2()} outputs a big.matrix of medoids
28 #' (of size limited by nb_series_per_chunk)
29 NULL
30
31 #' @rdname clustering
32 #' @export
33 clusteringTask1 = function(
34 indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE)
35 {
36 if (verbose)
37 cat(paste("*** Clustering task 1 on ",length(indices)," lines\n", sep=""))
38
39 if (parll)
40 {
41 cl = parallel::makeCluster(ncores_clust)
42 parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment())
43 }
44 while (length(indices) > K1)
45 {
46 indices_workers = .spreadIndices(indices, nb_series_per_chunk)
47 indices <-
48 if (parll)
49 {
50 unlist( parallel::parLapply(cl, indices_workers, function(inds) {
51 require("epclust", quietly=TRUE)
52 inds[ computeClusters1(getContribs(inds), K1, verbose) ]
53 }) )
54 }
55 else
56 {
57 unlist( lapply(indices_workers, function(inds)
58 inds[ computeClusters1(getContribs(inds), K1, verbose) ]
59 ) )
60 }
61 }
62 if (parll)
63 parallel::stopCluster(cl)
64
65 indices #medoids
66 }
67
68 #' @rdname clustering
69 #' @export
70 clusteringTask2 = function(medoids, K2,
71 getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
72 {
73 if (verbose)
74 cat(paste("*** Clustering task 2 on ",nrow(medoids)," lines\n", sep=""))
75
76 if (nrow(medoids) <= K2)
77 return (medoids)
78 synchrones = computeSynchrones(medoids,
79 getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll)
80 distances = computeWerDists(synchrones, ncores_clust, verbose, parll)
81 medoids[ computeClusters2(distances,K2,verbose), ]
82 }
83
84 #' @rdname clustering
85 #' @export
86 computeClusters1 = function(contribs, K1, verbose=FALSE)
87 {
88 if (verbose)
89 cat(paste(" computeClusters1() on ",nrow(contribs)," lines\n", sep=""))
90 cluster::pam(contribs, K1, diss=FALSE)$id.med
91 }
92
93 #' @rdname clustering
94 #' @export
95 computeClusters2 = function(distances, K2, verbose=FALSE)
96 {
97 if (verbose)
98 cat(paste(" computeClusters2() on ",nrow(distances)," lines\n", sep=""))
99 cluster::pam(distances, K2, diss=TRUE)$id.med
100 }
101
102 #' computeSynchrones
103 #'
104 #' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids,
105 #' using L2 distances.
106 #'
107 #' @param medoids big.matrix of medoids (curves of same length as initial series)
108 #' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series
109 #' have been replaced by stage-1 medoids)
110 #' @param nb_ref_curves How many reference series? (This number is known at this stage)
111 #' @inheritParams claws
112 #'
113 #' @return A big.matrix of size K1 x L where L = data_length
114 #'
115 #' @export
116 computeSynchrones = function(medoids, getRefSeries,
117 nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
118 {
119 if (verbose)
120 cat(paste("--- Compute synchrones\n", sep=""))
121
122 computeSynchronesChunk = function(indices)
123 {
124 ref_series = getRefSeries(indices)
125 nb_series = nrow(ref_series)
126
127 if (parll)
128 {
129 require("bigmemory", quietly=TRUE)
130 require("synchronicity", quietly=TRUE)
131 require("epclust", quietly=TRUE)
132 synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
133 medoids <- bigmemory::attach.big.matrix(medoids_desc)
134 m <- synchronicity::attach.mutex(m_desc)
135 }
136
137 #get medoids indices for this chunk of series
138 mi = computeMedoidsIndices(medoids@address, ref_series)
139 # #R-equivalent, requiring a matrix (thus potentially breaking "fit-in-memory" hope)
140 # mat_meds = medoids[,]
141 # mi = rep(NA,nb_series)
142 # for (i in 1:nb_series)
143 # mi[i] <- which.min( rowSums( sweep(mat_meds, 2, ref_series[i,], '-')^2 ) )
144 # rm(mat_meds); gc()
145
146 for (i in seq_len(nb_series))
147 {
148 if (parll)
149 synchronicity::lock(m)
150 synchrones[mi[i],] = synchrones[mi[i],] + ref_series[i,]
151 #TODO: remove counts
152 counts[mi[i],1] = counts[mi[i],1] + 1
153 if (parll)
154 synchronicity::unlock(m)
155 }
156 }
157
158 K = nrow(medoids) ; L = ncol(medoids)
159 # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in //
160 # TODO: if size > RAM (not our case), use file-backed big.matrix
161 synchrones = bigmemory::big.matrix(nrow=K, ncol=L, type="double", init=0.)
162 counts = bigmemory::big.matrix(nrow=K, ncol=1, type="double", init=0)
163 # synchronicity is only for Linux & MacOS; on Windows: run sequentially
164 parll = (requireNamespace("synchronicity",quietly=TRUE)
165 && parll && Sys.info()['sysname'] != "Windows")
166 if (parll)
167 {
168 m <- synchronicity::boost.mutex()
169 m_desc <- synchronicity::describe(m)
170 synchrones_desc = bigmemory::describe(synchrones)
171 medoids_desc = bigmemory::describe(medoids)
172
173 cl = parallel::makeCluster(ncores_clust)
174 parallel::clusterExport(cl,
175 varlist=c("synchrones_desc","counts","verbose","m_desc","medoids_desc","getRefSeries"),
176 envir=environment())
177 }
178
179 indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk)
180 ignored <-
181 if (parll)
182 parallel::parLapply(cl, indices_workers, computeSynchronesChunk)
183 else
184 lapply(indices_workers, computeSynchronesChunk)
185
186 if (parll)
187 parallel::stopCluster(cl)
188
189 #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') )
190 for (i in seq_len(K))
191 synchrones[i,] = synchrones[i,] / counts[i,1]
192 #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
193 # ...maybe; but let's hope resulting K1' be still quite bigger than K2
194 noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,])))
195 if (all(noNA_rows))
196 return (synchrones)
197 # Else: some clusters are empty, need to slice synchrones
198 synchrones[noNA_rows,]
199 }
200
201 #' computeWerDists
202 #'
203 #' Compute the WER distances between the synchrones curves (in rows), which are
204 #' returned (e.g.) by \code{computeSynchrones()}
205 #'
206 #' @param synchrones A big.matrix of synchrones, in rows. The series have same length
207 #' as the series in the initial dataset
208 #' @inheritParams claws
209 #'
210 #' @return A matrix of size K1 x K1
211 #'
212 #' @export
213 computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
214 {
215 if (verbose)
216 cat(paste("--- Compute WER dists\n", sep=""))
217
218 n <- nrow(synchrones)
219 delta <- ncol(synchrones)
220 #TODO: automatic tune of all these parameters ? (for other users)
221 nvoice <- 4
222 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones))
223 noctave = 13
224 # 4 here represent 2^5 = 32 half-hours ~ 1 day
225 #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
226 scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1)
227 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
228 s0=2
229 w0=2*pi
230 scaled=FALSE
231 s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
232 totnoct = noctave + as.integer(s0log/nvoice) + 1
233
234 Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
235 fcoefs = rep(1/3, 3) #moving average on 3 values
236
237 # Generate n(n-1)/2 pairs for WER distances computations
238 pairs = list()
239 V = seq_len(n)
240 for (i in 1:n)
241 {
242 V = V[-1]
243 pairs = c(pairs, lapply(V, function(v) c(i,v)))
244 }
245
246 # Distance between rows i and j
247 computeDistancesIJ = function(pair)
248 {
249 if (parll)
250 {
251 require("bigmemory", quietly=TRUE)
252 require("epclust", quietly=TRUE)
253 synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
254 Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
255 }
256
257 computeCWT = function(index)
258 {
259 ts <- scale(ts(synchrones[index,]), center=TRUE, scale=scaled)
260 totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
261 ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
262 #Normalization
263 sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
264 sqres <- sweep(ts.cwt,2,sqs,'*')
265 sqres / max(Mod(sqres))
266 }
267 #browser()
268 i = pair[1] ; j = pair[2]
269 if (verbose && j==i+1)
270 cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep=""))
271 print(system.time( { cwt_i <- computeCWT(i)
272 cwt_j <- computeCWT(j) } ))
273
274 print(system.time( {
275 num <- epclustFilter(Mod(cwt_i * Conj(cwt_j)))
276 WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i)))
277 WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
278 wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
279 Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * max(1 - wer2, 0.)) #FIXME: wer2 should be < 1
280 Xwer_dist[j,i] <- Xwer_dist[i,j]
281 } ) )
282 Xwer_dist[i,i] = 0.
283 }
284
285 if (parll)
286 {
287 cl = parallel::makeCluster(ncores_clust)
288 synchrones_desc <- bigmemory::describe(synchrones)
289 Xwer_dist_desc <- bigmemory::describe(Xwer_dist)
290
291 parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
292 "nvoice","w0","s0log","noctave","s0","verbose"), envir=environment())
293 }
294 browser()
295 ignored <-
296 if (parll)
297 parallel::parLapply(cl, pairs, computeDistancesIJ)
298 else
299 lapply(pairs, computeDistancesIJ)
300
301 if (parll)
302 parallel::stopCluster(cl)
303 #browser()
304 Xwer_dist[n,n] = 0.
305 distances <- Xwer_dist[,]
306 rm(Xwer_dist) ; gc()
307 distances #~small matrix K1 x K1
308 }
309
310 # Helper function to divide indices into balanced sets
311 .spreadIndices = function(indices, nb_per_chunk)
312 {
313 L = length(indices)
314 nb_workers = floor( L / nb_per_chunk )
315 if (nb_workers == 0)
316 {
317 # L < nb_series_per_chunk, simple case
318 indices_workers = list(indices)
319 }
320 else
321 {
322 indices_workers = lapply( seq_len(nb_workers), function(i)
323 indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] )
324 # Spread the remaining load among the workers
325 rem = L %% nb_per_chunk
326 while (rem > 0)
327 {
328 index = rem%%nb_workers + 1
329 indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1])
330 rem = rem - 1
331 }
332 }
333 indices_workers
334 }