Commit | Line | Data |
---|---|---|
ef67d338 | 1 | #' Generate a sample of (X,Y) of size n with default values |
321e13a9 | 2 | #' |
ef67d338 BA |
3 | #' @param n sample size |
4 | #' @param p number of covariates | |
5 | #' @param m size of the response | |
6 | #' @param k number of clusters | |
321e13a9 | 7 | #' |
ef67d338 | 8 | #' @return list with X and Y |
321e13a9 | 9 | #' |
ef67d338 BA |
10 | generateXYdefault = function(n, p, m, k) |
11 | { | |
39062512 BA |
12 | meanX = rep(0, p) |
13 | covX = diag(p) | |
bb64f5cb BA |
14 | covY = diag(m) |
15 | ω = rep(1./k,k) | |
39062512 | 16 | #initialize beta to a random number of non-zero random value |
321e13a9 | 17 | β = array(0, dim=c(p,m,k)) |
39062512 BA |
18 | for (j in 1:p) |
19 | { | |
20 | nonZeroCount = sample(1:m, 1) | |
bb64f5cb BA |
21 | if (nonZeroCount >= 2) |
22 | β[j,1:nonZeroCount,] = matrix(runif(nonZeroCount*k), ncol=k) | |
23 | else | |
24 | β[j,1,] = runif(k) | |
39062512 BA |
25 | } |
26 | ||
bb64f5cb | 27 | sample_IO = generateXY(n, ω, meanX, β, covX, covY) |
39062512 | 28 | return (list(X=sample_IO$X,Y=sample_IO$Y)) |
ef67d338 BA |
29 | } |
30 | ||
321e13a9 BA |
31 | #' Initialize the parameters in a basic way (zero for the conditional mean, uniform for |
32 | #' weights, identity for covariance matrices, and uniformly distributed for the | |
33 | #' clustering) | |
34 | #' | |
ef67d338 BA |
35 | #' @param n sample size |
36 | #' @param p number of covariates | |
37 | #' @param m size of the response | |
38 | #' @param k number of clusters | |
321e13a9 | 39 | #' |
ef67d338 | 40 | #' @return list with phiInit, rhoInit,piInit,gamInit |
321e13a9 | 41 | #' |
ef67d338 BA |
42 | basicInitParameters = function(n,p,m,k) |
43 | { | |
39062512 BA |
44 | phiInit = array(0, dim=c(p,m,k)) |
45 | ||
46 | piInit = (1./k)*rep(1,k) | |
47 | ||
48 | rhoInit = array(dim=c(m,m,k)) | |
49 | for (i in 1:k) | |
50 | rhoInit[,,i] = diag(m) | |
51 | ||
52 | gamInit = 0.1 * matrix(1, nrow=n, ncol=k) | |
53 | R = sample(1:k, n, replace=TRUE) | |
54 | for (i in 1:n) | |
55 | gamInit[i,R[i]] = 0.9 | |
56 | gamInit = gamInit/sum(gamInit[1,]) | |
57 | ||
321e13a9 | 58 | return (list("phiInit"=phiInit, "rhoInit"=rhoInit, "piInit"=piInit, "gamInit"=gamInit)) |
ef67d338 | 59 | } |