Commit | Line | Data |
---|---|---|
8e92c49c BA |
1 | #include "utils.h" |
2 | #include <stdlib.h> | |
1d3c1faa BA |
3 | #include <gsl/gsl_linalg.h> |
4 | ||
b42f0f40 | 5 | // TODO: don't recompute indexes ai(...) and mi(...) when possible |
09ab3c16 | 6 | void EMGLLF_core( |
1d3c1faa | 7 | // IN parameters |
9ff729fb BA |
8 | const Real* phiInit, // parametre initial de moyenne renormalisé |
9 | const Real* rhoInit, // parametre initial de variance renormalisé | |
10 | const Real* piInit, // parametre initial des proportions | |
11 | const Real* gamInit, // paramètre initial des probabilités a posteriori de chaque échantillon | |
8e92c49c BA |
12 | int mini, // nombre minimal d'itérations dans l'algorithme EM |
13 | int maxi, // nombre maximal d'itérations dans l'algorithme EM | |
9ff729fb BA |
14 | Real gamma, // puissance des proportions dans la pénalisation pour un Lasso adaptatif |
15 | Real lambda, // valeur du paramètre de régularisation du Lasso | |
16 | const Real* X, // régresseurs | |
17 | const Real* Y, // réponse | |
18 | Real tau, // seuil pour accepter la convergence | |
1d3c1faa | 19 | // OUT parameters (all pointers, to be modified) |
9ff729fb BA |
20 | Real* phi, // parametre de moyenne renormalisé, calculé par l'EM |
21 | Real* rho, // parametre de variance renormalisé, calculé par l'EM | |
22 | Real* pi, // parametre des proportions renormalisé, calculé par l'EM | |
23 | Real* LLF, // log vraisemblance associée à cet échantillon, pour les valeurs estimées des paramètres | |
24 | Real* S, | |
1d3c1faa | 25 | // additional size parameters |
8e92c49c BA |
26 | int n, // nombre d'echantillons |
27 | int p, // nombre de covariables | |
28 | int m, // taille de Y (multivarié) | |
29 | int k) // nombre de composantes dans le mélange | |
1d3c1faa BA |
30 | { |
31 | //Initialize outputs | |
32 | copyArray(phiInit, phi, p*m*k); | |
33 | copyArray(rhoInit, rho, m*m*k); | |
34 | copyArray(piInit, pi, k); | |
35 | zeroArray(LLF, maxi); | |
36 | //S is already allocated, and doesn't need to be 'zeroed' | |
4cab944a | 37 | |
b42f0f40 | 38 | //Other local variables: same as in R |
9ff729fb | 39 | Real* gam = (Real*)malloc(n*k*sizeof(Real)); |
1d3c1faa | 40 | copyArray(gamInit, gam, n*k); |
b42f0f40 BA |
41 | Real* Gram2 = (Real*)malloc(p*p*k*sizeof(Real)); |
42 | Real* ps2 = (Real*)malloc(p*m*k*sizeof(Real)); | |
9ff729fb | 43 | Real* b = (Real*)malloc(k*sizeof(Real)); |
b42f0f40 BA |
44 | Real* X2 = (Real*)malloc(n*p*k*sizeof(Real)); |
45 | Real* Y2 = (Real*)malloc(n*m*k*sizeof(Real)); | |
46 | Real dist = 0.; | |
47 | Real dist2 = 0.; | |
48 | int ite = 0; | |
9ff729fb | 49 | Real* pi2 = (Real*)malloc(k*sizeof(Real)); |
9ff729fb BA |
50 | Real* ps = (Real*)malloc(m*k*sizeof(Real)); |
51 | Real* nY2 = (Real*)malloc(m*k*sizeof(Real)); | |
52 | Real* ps1 = (Real*)malloc(n*m*k*sizeof(Real)); | |
9ff729fb | 53 | Real* Gam = (Real*)malloc(n*k*sizeof(Real)); |
b42f0f40 BA |
54 | const Real EPS = 1e-15; |
55 | // Additional (not at this place, in R file) | |
56 | Real* gam2 = (Real*)malloc(k*sizeof(Real)); | |
ef67d338 | 57 | Real* sqNorm2 = (Real*)malloc(k*sizeof(Real)); |
1d3c1faa BA |
58 | gsl_matrix* matrix = gsl_matrix_alloc(m, m); |
59 | gsl_permutation* permutation = gsl_permutation_alloc(m); | |
9ff729fb BA |
60 | Real* YiRhoR = (Real*)malloc(m*sizeof(Real)); |
61 | Real* XiPhiR = (Real*)malloc(m*sizeof(Real)); | |
ef67d338 | 62 | const Real gaussConstM = pow(2.*M_PI,m/2.); |
b42f0f40 BA |
63 | Real* Phi = (Real*)malloc(p*m*k*sizeof(Real)); |
64 | Real* Rho = (Real*)malloc(m*m*k*sizeof(Real)); | |
65 | Real* Pi = (Real*)malloc(k*sizeof(Real)); | |
4cab944a | 66 | |
1d3c1faa BA |
67 | while (ite < mini || (ite < maxi && (dist >= tau || dist2 >= sqrt(tau)))) |
68 | { | |
69 | copyArray(phi, Phi, p*m*k); | |
70 | copyArray(rho, Rho, m*m*k); | |
71 | copyArray(pi, Pi, k); | |
4cab944a BA |
72 | |
73 | // Calculs associés a Y et X | |
74 | for (int r=0; r<k; r++) | |
1d3c1faa | 75 | { |
4cab944a | 76 | for (int mm=0; mm<m; mm++) |
1d3c1faa | 77 | { |
ef67d338 | 78 | //Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm] |
4cab944a | 79 | for (int u=0; u<n; u++) |
435cb841 | 80 | Y2[ai(u,mm,r,n,m,k)] = sqrt(gam[mi(u,r,n,k)]) * Y[mi(u,mm,n,m)]; |
1d3c1faa | 81 | } |
4cab944a | 82 | for (int i=0; i<n; i++) |
1d3c1faa | 83 | { |
ef67d338 | 84 | //X2[i,,r] = sqrt(gam[i,r]) * X[i,] |
4cab944a | 85 | for (int u=0; u<p; u++) |
e39bc178 | 86 | X2[ai(i,u,r,n,p,k)] = sqrt(gam[mi(i,r,n,k)]) * X[mi(i,u,n,p)]; |
1d3c1faa | 87 | } |
4cab944a | 88 | for (int mm=0; mm<m; mm++) |
1d3c1faa | 89 | { |
ef67d338 | 90 | //ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) |
4cab944a | 91 | for (int u=0; u<p; u++) |
1d3c1faa | 92 | { |
9ff729fb | 93 | Real dotProduct = 0.; |
4cab944a | 94 | for (int v=0; v<n; v++) |
46a2e676 | 95 | dotProduct += X2[ai(v,u,r,n,p,k)] * Y2[ai(v,mm,r,n,m,k)]; |
e39bc178 | 96 | ps2[ai(u,mm,r,p,m,k)] = dotProduct; |
1d3c1faa BA |
97 | } |
98 | } | |
4cab944a | 99 | for (int j=0; j<p; j++) |
1d3c1faa | 100 | { |
4cab944a | 101 | for (int s=0; s<p; s++) |
1d3c1faa | 102 | { |
ef67d338 | 103 | //Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r]) |
9ff729fb | 104 | Real dotProduct = 0.; |
4cab944a BA |
105 | for (int u=0; u<n; u++) |
106 | dotProduct += X2[ai(u,j,r,n,p,k)] * X2[ai(u,s,r,n,p,k)]; | |
107 | Gram2[ai(j,s,r,p,p,k)] = dotProduct; | |
1d3c1faa BA |
108 | } |
109 | } | |
110 | } | |
111 | ||
112 | ///////////// | |
113 | // Etape M // | |
114 | ///////////// | |
4cab944a | 115 | |
1d3c1faa | 116 | // Pour pi |
4cab944a | 117 | for (int r=0; r<k; r++) |
1d3c1faa | 118 | { |
ef67d338 | 119 | //b[r] = sum(abs(phi[,,r])) |
9ff729fb | 120 | Real sumAbsPhi = 0.; |
4cab944a BA |
121 | for (int u=0; u<p; u++) |
122 | for (int v=0; v<m; v++) | |
123 | sumAbsPhi += fabs(phi[ai(u,v,r,p,m,k)]); | |
1d3c1faa BA |
124 | b[r] = sumAbsPhi; |
125 | } | |
ef67d338 | 126 | //gam2 = colSums(gam) |
4cab944a | 127 | for (int u=0; u<k; u++) |
1d3c1faa | 128 | { |
9ff729fb | 129 | Real sumOnColumn = 0.; |
4cab944a BA |
130 | for (int v=0; v<n; v++) |
131 | sumOnColumn += gam[mi(v,u,n,k)]; | |
1d3c1faa BA |
132 | gam2[u] = sumOnColumn; |
133 | } | |
ef67d338 | 134 | //a = sum(gam %*% log(pi)) |
9ff729fb | 135 | Real a = 0.; |
4cab944a | 136 | for (int u=0; u<n; u++) |
1d3c1faa | 137 | { |
9ff729fb | 138 | Real dotProduct = 0.; |
4cab944a BA |
139 | for (int v=0; v<k; v++) |
140 | dotProduct += gam[mi(u,v,n,k)] * log(pi[v]); | |
1d3c1faa BA |
141 | a += dotProduct; |
142 | } | |
4cab944a | 143 | |
1d3c1faa | 144 | //tant que les proportions sont negatives |
4cab944a | 145 | int kk = 0; |
1d3c1faa | 146 | int pi2AllPositive = 0; |
9ff729fb | 147 | Real invN = 1./n; |
1d3c1faa BA |
148 | while (!pi2AllPositive) |
149 | { | |
ef67d338 BA |
150 | //pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi) |
151 | Real pow_01_kk = pow(0.1,kk); | |
4cab944a | 152 | for (int r=0; r<k; r++) |
ef67d338 BA |
153 | pi2[r] = pi[r] + pow_01_kk * (invN*gam2[r] - pi[r]); |
154 | //pi2AllPositive = all(pi2 >= 0) | |
1d3c1faa | 155 | pi2AllPositive = 1; |
4cab944a | 156 | for (int r=0; r<k; r++) |
1d3c1faa BA |
157 | { |
158 | if (pi2[r] < 0) | |
159 | { | |
160 | pi2AllPositive = 0; | |
161 | break; | |
162 | } | |
163 | } | |
164 | kk++; | |
165 | } | |
4cab944a | 166 | |
435cb841 | 167 | //sum(pi^gamma * b) |
9ff729fb | 168 | Real piPowGammaDotB = 0.; |
4cab944a | 169 | for (int v=0; v<k; v++) |
1d3c1faa | 170 | piPowGammaDotB += pow(pi[v],gamma) * b[v]; |
435cb841 | 171 | //sum(pi2^gamma * b) |
9ff729fb | 172 | Real pi2PowGammaDotB = 0.; |
4cab944a | 173 | for (int v=0; v<k; v++) |
1d3c1faa | 174 | pi2PowGammaDotB += pow(pi2[v],gamma) * b[v]; |
435cb841 BA |
175 | //sum(gam2 * log(pi2)) |
176 | Real gam2DotLogPi2 = 0.; | |
4cab944a | 177 | for (int v=0; v<k; v++) |
435cb841 BA |
178 | gam2DotLogPi2 += gam2[v] * log(pi2[v]); |
179 | ||
ef67d338 | 180 | //t(m) la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante |
435cb841 | 181 | while (-invN*a + lambda*piPowGammaDotB < -invN*gam2DotLogPi2 + lambda*pi2PowGammaDotB |
8e92c49c | 182 | && kk<1000) |
1d3c1faa | 183 | { |
ef67d338 BA |
184 | Real pow_01_kk = pow(0.1,kk); |
185 | //pi2 = pi + 0.1^kk * (1/n*gam2 - pi) | |
4cab944a | 186 | for (int v=0; v<k; v++) |
ef67d338 | 187 | pi2[v] = pi[v] + pow_01_kk * (invN*gam2[v] - pi[v]); |
435cb841 | 188 | //pi2 was updated, so we recompute pi2PowGammaDotB and gam2DotLogPi2 |
4cab944a BA |
189 | pi2PowGammaDotB = 0.; |
190 | for (int v=0; v<k; v++) | |
1d3c1faa | 191 | pi2PowGammaDotB += pow(pi2[v],gamma) * b[v]; |
435cb841 | 192 | gam2DotLogPi2 = 0.; |
4cab944a | 193 | for (int v=0; v<k; v++) |
435cb841 | 194 | gam2DotLogPi2 += gam2[v] * log(pi2[v]); |
1d3c1faa BA |
195 | kk++; |
196 | } | |
9ff729fb | 197 | Real t = pow(0.1,kk); |
ef67d338 | 198 | //sum(pi + t*(pi2-pi)) |
9ff729fb | 199 | Real sumPiPlusTbyDiff = 0.; |
4cab944a | 200 | for (int v=0; v<k; v++) |
1d3c1faa | 201 | sumPiPlusTbyDiff += (pi[v] + t*(pi2[v] - pi[v])); |
ef67d338 | 202 | //pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi)) |
4cab944a | 203 | for (int v=0; v<k; v++) |
1d3c1faa | 204 | pi[v] = (pi[v] + t*(pi2[v] - pi[v])) / sumPiPlusTbyDiff; |
4cab944a | 205 | |
1d3c1faa | 206 | //Pour phi et rho |
4cab944a | 207 | for (int r=0; r<k; r++) |
1d3c1faa | 208 | { |
4cab944a | 209 | for (int mm=0; mm<m; mm++) |
1d3c1faa | 210 | { |
4cab944a | 211 | for (int i=0; i<n; i++) |
1d3c1faa | 212 | { |
435cb841 | 213 | //< X2[i,,r] , phi[,mm,r] > |
ef67d338 | 214 | Real dotProduct = 0.; |
4cab944a | 215 | for (int u=0; u<p; u++) |
a2d68d1d | 216 | dotProduct += X2[ai(i,u,r,n,p,k)] * phi[ai(u,mm,r,p,m,k)]; |
ef67d338 | 217 | //ps1[i,mm,r] = Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r]) |
4cab944a | 218 | ps1[ai(i,mm,r,n,m,k)] = Y2[ai(i,mm,r,n,m,k)] * dotProduct; |
1d3c1faa | 219 | } |
ef67d338 BA |
220 | //ps[mm,r] = sum(ps1[,mm,r]) |
221 | Real sumPs1 = 0.; | |
4cab944a BA |
222 | for (int u=0; u<n; u++) |
223 | sumPs1 += ps1[ai(u,mm,r,n,m,k)]; | |
224 | ps[mi(mm,r,m,k)] = sumPs1; | |
435cb841 BA |
225 | //nY2[mm,r] = sum(Y2[,mm,r]^2) |
226 | Real sumY2 = 0.; | |
4cab944a | 227 | for (int u=0; u<n; u++) |
435cb841 BA |
228 | sumY2 += Y2[ai(u,mm,r,n,m,k)] * Y2[ai(u,mm,r,n,m,k)]; |
229 | nY2[mi(mm,r,m,k)] = sumY2; | |
ef67d338 | 230 | //rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*(gam2[r]))) / (2*nY2[mm,r]) |
a2d68d1d | 231 | rho[ai(mm,mm,r,m,m,k)] = ( ps[mi(mm,r,m,k)] + sqrt( ps[mi(mm,r,m,k)]*ps[mi(mm,r,m,k)] |
ef67d338 | 232 | + 4*nY2[mi(mm,r,m,k)] * gam2[r] ) ) / (2*nY2[mi(mm,r,m,k)]); |
1d3c1faa BA |
233 | } |
234 | } | |
435cb841 | 235 | |
4cab944a | 236 | for (int r=0; r<k; r++) |
1d3c1faa | 237 | { |
4cab944a | 238 | for (int j=0; j<p; j++) |
1d3c1faa | 239 | { |
4cab944a | 240 | for (int mm=0; mm<m; mm++) |
1d3c1faa | 241 | { |
b42f0f40 | 242 | //sum(phi[-j,mm,r] * Gram2[j, setdiff(1:p,j),r]) |
435cb841 | 243 | Real phiDotGram2 = 0.; |
b42f0f40 BA |
244 | for (int u=0; u<p; u++) |
245 | { | |
246 | if (u != j) | |
435cb841 | 247 | phiDotGram2 += phi[ai(u,mm,r,p,m,k)] * Gram2[ai(j,u,r,p,p,k)]; |
b42f0f40 | 248 | } |
435cb841 BA |
249 | //S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j,-j,r]) |
250 | S[ai(j,mm,r,p,m,k)] = -rho[ai(mm,mm,r,m,m,k)] * ps2[ai(j,mm,r,p,m,k)] + phiDotGram2; | |
251 | Real pirPowGamma = pow(pi[r],gamma); | |
252 | if (fabs(S[ai(j,mm,r,p,m,k)]) <= n*lambda*pirPowGamma) | |
253 | phi[ai(j,mm,r,p,m,k)] = 0.; | |
254 | else if (S[ai(j,mm,r,p,m,k)] > n*lambda*pirPowGamma) | |
ef67d338 | 255 | { |
435cb841 | 256 | phi[ai(j,mm,r,p,m,k)] = (n*lambda*pirPowGamma - S[ai(j,mm,r,p,m,k)]) |
4cab944a | 257 | / Gram2[ai(j,j,r,p,p,k)]; |
ef67d338 | 258 | } |
1d3c1faa | 259 | else |
ef67d338 | 260 | { |
435cb841 | 261 | phi[ai(j,mm,r,p,m,k)] = -(n*lambda*pirPowGamma + S[ai(j,mm,r,p,m,k)]) |
4cab944a | 262 | / Gram2[ai(j,j,r,p,p,k)]; |
ef67d338 | 263 | } |
1d3c1faa BA |
264 | } |
265 | } | |
266 | } | |
4cab944a | 267 | |
1d3c1faa BA |
268 | ///////////// |
269 | // Etape E // | |
270 | ///////////// | |
4cab944a | 271 | |
1d3c1faa | 272 | int signum; |
b42f0f40 | 273 | Real sumLogLLF2 = 0.; |
4cab944a | 274 | for (int i=0; i<n; i++) |
1d3c1faa | 275 | { |
4cab944a | 276 | for (int r=0; r<k; r++) |
1d3c1faa | 277 | { |
ef67d338 | 278 | //compute Y[i,]%*%rho[,,r] |
4cab944a | 279 | for (int u=0; u<m; u++) |
1d3c1faa | 280 | { |
b42f0f40 | 281 | YiRhoR[u] = 0.; |
4cab944a | 282 | for (int v=0; v<m; v++) |
aa8df014 | 283 | YiRhoR[u] += Y[mi(i,v,n,m)] * rho[ai(v,u,r,m,m,k)]; |
1d3c1faa | 284 | } |
4cab944a | 285 | |
435cb841 | 286 | //compute X[i,]%*%phi[,,r] |
4cab944a | 287 | for (int u=0; u<m; u++) |
1d3c1faa | 288 | { |
b42f0f40 | 289 | XiPhiR[u] = 0.; |
4cab944a BA |
290 | for (int v=0; v<p; v++) |
291 | XiPhiR[u] += X[mi(i,v,n,p)] * phi[ai(v,u,r,p,m,k)]; | |
1d3c1faa | 292 | } |
4cab944a | 293 | |
ef67d338 | 294 | //compute sq norm || Y(:,i)*rho(:,:,r)-X(i,:)*phi(:,:,r) ||_2^2 |
b42f0f40 | 295 | sqNorm2[r] = 0.; |
4cab944a | 296 | for (int u=0; u<m; u++) |
ef67d338 | 297 | sqNorm2[r] += (YiRhoR[u]-XiPhiR[u]) * (YiRhoR[u]-XiPhiR[u]); |
1d3c1faa | 298 | } |
ef67d338 | 299 | |
b42f0f40 BA |
300 | Real sumLLF1 = 0.; |
301 | Real sumGamI = 0.; | |
4cab944a | 302 | for (int r=0; r<k; r++) |
1d3c1faa | 303 | { |
ef67d338 | 304 | //compute det(rho[,,r]) [TODO: avoid re-computations] |
4cab944a | 305 | for (int u=0; u<m; u++) |
1d3c1faa | 306 | { |
4cab944a BA |
307 | for (int v=0; v<m; v++) |
308 | matrix->data[u*m+v] = rho[ai(u,v,r,m,m,k)]; | |
1d3c1faa BA |
309 | } |
310 | gsl_linalg_LU_decomp(matrix, permutation, &signum); | |
9ff729fb | 311 | Real detRhoR = gsl_linalg_LU_det(matrix, signum); |
b42f0f40 | 312 | Gam[mi(i,r,n,k)] = pi[r] * exp(-.5*sqNorm2[r]) * detRhoR; |
ef67d338 | 313 | sumLLF1 += Gam[mi(i,r,n,k)] / gaussConstM; |
4cab944a | 314 | sumGamI += Gam[mi(i,r,n,k)]; |
1d3c1faa | 315 | } |
435cb841 | 316 | |
1d3c1faa | 317 | sumLogLLF2 += log(sumLLF1); |
4cab944a | 318 | for (int r=0; r<k; r++) |
1d3c1faa | 319 | { |
ef67d338 BA |
320 | //gam[i,] = Gam[i,] / sumGamI |
321 | gam[mi(i,r,n,k)] = sumGamI > EPS ? Gam[mi(i,r,n,k)] / sumGamI : 0.; | |
1d3c1faa BA |
322 | } |
323 | } | |
ef67d338 BA |
324 | |
325 | //sumPen = sum(pi^gamma * b) | |
b42f0f40 | 326 | Real sumPen = 0.; |
4cab944a | 327 | for (int r=0; r<k; r++) |
1d3c1faa | 328 | sumPen += pow(pi[r],gamma) * b[r]; |
ef67d338 | 329 | //LLF[ite] = -sumLogLLF2/n + lambda*sumPen |
1d3c1faa | 330 | LLF[ite] = -invN * sumLogLLF2 + lambda * sumPen; |
b42f0f40 | 331 | dist = ite==0 ? LLF[ite] : (LLF[ite] - LLF[ite-1]) / (1. + fabs(LLF[ite])); |
ef67d338 BA |
332 | |
333 | //Dist1 = max( abs(phi-Phi) / (1+abs(phi)) ) | |
b42f0f40 | 334 | Real Dist1 = 0.; |
4cab944a | 335 | for (int u=0; u<p; u++) |
1d3c1faa | 336 | { |
4cab944a | 337 | for (int v=0; v<m; v++) |
1d3c1faa | 338 | { |
4cab944a | 339 | for (int w=0; w<k; w++) |
1d3c1faa | 340 | { |
b42f0f40 BA |
341 | Real tmpDist = fabs(phi[ai(u,v,w,p,m,k)]-Phi[ai(u,v,w,p,m,k)]) |
342 | / (1.+fabs(phi[ai(u,v,w,p,m,k)])); | |
1d3c1faa BA |
343 | if (tmpDist > Dist1) |
344 | Dist1 = tmpDist; | |
345 | } | |
346 | } | |
347 | } | |
ef67d338 | 348 | //Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) ) |
b42f0f40 | 349 | Real Dist2 = 0.; |
4cab944a | 350 | for (int u=0; u<m; u++) |
1d3c1faa | 351 | { |
4cab944a | 352 | for (int v=0; v<m; v++) |
1d3c1faa | 353 | { |
4cab944a | 354 | for (int w=0; w<k; w++) |
1d3c1faa | 355 | { |
b42f0f40 BA |
356 | Real tmpDist = fabs(rho[ai(u,v,w,m,m,k)]-Rho[ai(u,v,w,m,m,k)]) |
357 | / (1.+fabs(rho[ai(u,v,w,m,m,k)])); | |
1d3c1faa BA |
358 | if (tmpDist > Dist2) |
359 | Dist2 = tmpDist; | |
360 | } | |
361 | } | |
362 | } | |
ef67d338 | 363 | //Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi))) |
b42f0f40 | 364 | Real Dist3 = 0.; |
4cab944a | 365 | for (int u=0; u<n; u++) |
1d3c1faa | 366 | { |
4cab944a | 367 | for (int v=0; v<k; v++) |
1d3c1faa | 368 | { |
b42f0f40 | 369 | Real tmpDist = fabs(pi[v]-Pi[v]) / (1.+fabs(pi[v])); |
1d3c1faa BA |
370 | if (tmpDist > Dist3) |
371 | Dist3 = tmpDist; | |
372 | } | |
373 | } | |
374 | //dist2=max([max(Dist1),max(Dist2),max(Dist3)]); | |
375 | dist2 = Dist1; | |
376 | if (Dist2 > dist2) | |
377 | dist2 = Dist2; | |
378 | if (Dist3 > dist2) | |
379 | dist2 = Dist3; | |
ef67d338 | 380 | |
1d3c1faa BA |
381 | ite++; |
382 | } | |
ef67d338 | 383 | |
37e11bb0 BA |
384 | //TODO: affec = apply(gam, 1,which.max) à traduire, et retourner affec aussi. |
385 | ||
1d3c1faa BA |
386 | //free memory |
387 | free(b); | |
388 | free(gam); | |
389 | free(Gam); | |
390 | free(Phi); | |
391 | free(Rho); | |
392 | free(Pi); | |
393 | free(ps); | |
394 | free(nY2); | |
395 | free(ps1); | |
1d3c1faa BA |
396 | free(Gram2); |
397 | free(ps2); | |
398 | gsl_matrix_free(matrix); | |
399 | gsl_permutation_free(permutation); | |
400 | free(XiPhiR); | |
401 | free(YiRhoR); | |
402 | free(gam2); | |
403 | free(pi2); | |
404 | free(X2); | |
405 | free(Y2); | |
ef67d338 | 406 | free(sqNorm2); |
1d3c1faa | 407 | } |