use Rcpp; ongoing debug for parallel synchrones computation
[epclust.git] / epclust / R / clustering.R
CommitLineData
4bcfdbee
BA
1#' @name clustering
2#' @rdname clustering
492cd9e7 3#' @aliases clusteringTask1 computeClusters1 computeClusters2
4bcfdbee 4#'
492cd9e7 5#' @title Two-stage clustering, withing one task (see \code{claws()})
4bcfdbee 6#'
492cd9e7
BA
7#' @description \code{clusteringTask1()} runs one full stage-1 task, which consists in
8#' iterated stage 1 clustering (on nb_curves / ntasks energy contributions, computed
bf5c0844
BA
9#' through discrete wavelets coefficients).
10#' \code{clusteringTask2()} runs a full stage-2 task, which consists in synchrones
11#' and then WER distances computations, before applying the clustering algorithm.
12#' \code{computeClusters1()} and \code{computeClusters2()} correspond to the atomic
13#' clustering procedures respectively for stage 1 and 2. The former applies the
14#' clustering algorithm (PAM) on a contributions matrix, while the latter clusters
15#' a chunk of series inside one task (~max nb_series_per_chunk)
4bcfdbee
BA
16#'
17#' @param indices Range of series indices to cluster in parallel (initial data)
18#' @param getContribs Function to retrieve contributions from initial series indices:
19#' \code{getContribs(indices)} outpus a contributions matrix
20#' @param contribs matrix of contributions (e.g. output of \code{curvesToContribs()})
777c4b02 21#' @param distances matrix of K1 x K1 (WER) distances between synchrones
4bcfdbee
BA
22#' @inheritParams computeSynchrones
23#' @inheritParams claws
24#'
492cd9e7 25#' @return For \code{clusteringTask1()} and \code{computeClusters1()}, the indices of the
4bcfdbee 26#' computed (K1) medoids. Indices are irrelevant for stage 2 clustering, thus
24ed5d83 27#' \code{computeClusters2()} outputs a big.matrix of medoids
4bcfdbee
BA
28#' (of size limited by nb_series_per_chunk)
29NULL
30
31#' @rdname clustering
32#' @export
492cd9e7
BA
33clusteringTask1 = function(
34 indices, getContribs, K1, nb_series_per_chunk, ncores_clust=1, verbose=FALSE, parll=TRUE)
5c652979 35{
492cd9e7 36 if (verbose)
e161499b 37 cat(paste("*** Clustering task 1 on ",length(indices)," lines\n", sep=""))
4bcfdbee 38
492cd9e7 39 if (parll)
7b13d0c2 40 {
492cd9e7
BA
41 cl = parallel::makeCluster(ncores_clust)
42 parallel::clusterExport(cl, varlist=c("getContribs","K1","verbose"), envir=environment())
7b13d0c2 43 }
492cd9e7
BA
44 while (length(indices) > K1)
45 {
46 indices_workers = .spreadIndices(indices, nb_series_per_chunk)
e161499b
BA
47 indices <-
48 if (parll)
49 {
50 unlist( parallel::parLapply(cl, indices_workers, function(inds) {
51 require("epclust", quietly=TRUE)
52 inds[ computeClusters1(getContribs(inds), K1, verbose) ]
53 }) )
54 }
55 else
56 {
57 unlist( lapply(indices_workers, function(inds)
58 inds[ computeClusters1(getContribs(inds), K1, verbose) ]
59 ) )
60 }
492cd9e7
BA
61 }
62 if (parll)
63 parallel::stopCluster(cl)
64
56857861 65 indices #medoids
5c652979
BA
66}
67
4bcfdbee
BA
68#' @rdname clustering
69#' @export
bf5c0844 70clusteringTask2 = function(medoids, K2,
492cd9e7 71 getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
5c652979 72{
e161499b
BA
73 if (verbose)
74 cat(paste("*** Clustering task 2 on ",nrow(medoids)," lines\n", sep=""))
75
bf5c0844
BA
76 if (nrow(medoids) <= K2)
77 return (medoids)
492cd9e7
BA
78 synchrones = computeSynchrones(medoids,
79 getRefSeries, nb_ref_curves, nb_series_per_chunk, ncores_clust, verbose, parll)
80 distances = computeWerDists(synchrones, ncores_clust, verbose, parll)
777c4b02 81 medoids[ computeClusters2(distances,K2,verbose), ]
5c652979
BA
82}
83
bf5c0844
BA
84#' @rdname clustering
85#' @export
e161499b
BA
86computeClusters1 = function(contribs, K1, verbose=FALSE)
87{
88 if (verbose)
89 cat(paste(" computeClusters1() on ",nrow(contribs)," lines\n", sep=""))
bf5c0844 90 cluster::pam(contribs, K1, diss=FALSE)$id.med
e161499b 91}
bf5c0844
BA
92
93#' @rdname clustering
94#' @export
e161499b
BA
95computeClusters2 = function(distances, K2, verbose=FALSE)
96{
97 if (verbose)
98 cat(paste(" computeClusters2() on ",nrow(distances)," lines\n", sep=""))
bf5c0844 99 cluster::pam(distances, K2, diss=TRUE)$id.med
e161499b 100}
bf5c0844 101
4bcfdbee
BA
102#' computeSynchrones
103#'
104#' Compute the synchrones curves (sum of clusters elements) from a matrix of medoids,
105#' using L2 distances.
106#'
24ed5d83 107#' @param medoids big.matrix of medoids (curves of same length as initial series)
4bcfdbee
BA
108#' @param getRefSeries Function to retrieve initial series (e.g. in stage 2 after series
109#' have been replaced by stage-1 medoids)
492cd9e7 110#' @param nb_ref_curves How many reference series? (This number is known at this stage)
4bcfdbee
BA
111#' @inheritParams claws
112#'
24ed5d83
BA
113#' @return A big.matrix of size K1 x L where L = data_length
114#'
4bcfdbee 115#' @export
492cd9e7
BA
116computeSynchrones = function(medoids, getRefSeries,
117 nb_ref_curves, nb_series_per_chunk, ncores_clust=1,verbose=FALSE,parll=TRUE)
e205f218 118{
e161499b
BA
119 if (verbose)
120 cat(paste("--- Compute synchrones\n", sep=""))
121
492cd9e7 122 computeSynchronesChunk = function(indices)
3eef8d3d 123 {
492cd9e7 124 ref_series = getRefSeries(indices)
e161499b 125 nb_series = nrow(ref_series)
e161499b 126
363ae134
BA
127 if (parll)
128 {
129 require("bigmemory", quietly=TRUE)
130 require("synchronicity", quietly=TRUE)
131 require("epclust", quietly=TRUE)
132 synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
133 medoids <- bigmemory::attach.big.matrix(medoids_desc)
134 m <- synchronicity::attach.mutex(m_desc)
135 }
136
137
e161499b 138
363ae134
BA
139#TODO: use dbs(),
140 #https://www.r-bloggers.com/debugging-parallel-code-with-dbs/
141 #http://gforge.se/2015/02/how-to-go-parallel-in-r-basics-tips/
142
143#OK ::
144#write(length(indices), file="TOTO")
145#write( computeMedoidsIndices(medoids@address, getRefSeries(indices[1:600])), file="TOTO")
146#stop()
147
148# write(indices, file="TOTO", ncolumns=10, append=TRUE)
149#write("medoids", file = "TOTO", ncolumns=1, append=TRUE)
150#write(medoids[1,1:3], file = "TOTO", ncolumns=1, append=TRUE)
151#write("synchrones", file = "TOTO", ncolumns=1, append=TRUE)
152#write(synchrones[1,1:3], file = "TOTO", ncolumns=1, append=TRUE)
153
154#NOT OK :: (should just be "ref_series") ...or yes ? race problems mutex then ? ?!
155 #get medoids indices for this chunk of series
156 mi = computeMedoidsIndices(medoids@address, getRefSeries(indices[1:600])) #ref_series)
157write("MI ::::", file = "TOTO", ncolumns=1, append=TRUE)
158write(mi[1:3], file = "TOTO", ncolumns=1, append=TRUE)
159
160# #R-equivalent, requiring a matrix (thus potentially breaking "fit-in-memory" hope)
161# mat_meds = medoids[,]
162# mi = rep(NA,nb_series)
163# for (i in 1:nb_series)
164# mi[i] <- which.min( rowSums( sweep(mat_meds, 2, ref_series[i,], '-')^2 ) )
165# rm(mat_meds); gc()
e161499b
BA
166
167 for (i in seq_len(nb_series))
56857861 168 {
492cd9e7
BA
169 if (parll)
170 synchronicity::lock(m)
e161499b
BA
171 synchrones[mi[i],] = synchrones[mi[i],] + ref_series[i,]
172 counts[mi[i],1] = counts[mi[i],1] + 1
492cd9e7
BA
173 if (parll)
174 synchronicity::unlock(m)
175 }
176 }
177
e161499b 178 K = nrow(medoids) ; L = ncol(medoids)
492cd9e7 179 # Use bigmemory (shared==TRUE by default) + synchronicity to fill synchrones in //
24ed5d83 180 # TODO: if size > RAM (not our case), use file-backed big.matrix
e161499b
BA
181 synchrones = bigmemory::big.matrix(nrow=K, ncol=L, type="double", init=0.)
182 counts = bigmemory::big.matrix(nrow=K, ncol=1, type="double", init=0)
24ed5d83 183 # synchronicity is only for Linux & MacOS; on Windows: run sequentially
492cd9e7
BA
184 parll = (requireNamespace("synchronicity",quietly=TRUE)
185 && parll && Sys.info()['sysname'] != "Windows")
186 if (parll)
363ae134 187 {
492cd9e7 188 m <- synchronicity::boost.mutex()
363ae134
BA
189 m_desc <- synchronicity::describe(m)
190 synchrones_desc = bigmemory::describe(synchrones)
191 medoids_desc = bigmemory::describe(medoids)
492cd9e7 192
24ed5d83
BA
193 cl = parallel::makeCluster(ncores_clust)
194 parallel::clusterExport(cl,
363ae134 195 varlist=c("synchrones_desc","counts","verbose","m_desc","medoids_desc","getRefSeries"),
24ed5d83
BA
196 envir=environment())
197 }
198
492cd9e7 199 indices_workers = .spreadIndices(seq_len(nb_ref_curves), nb_series_per_chunk)
c45fd663 200 ignored <-
492cd9e7 201 if (parll)
e161499b 202 parallel::parLapply(cl, indices_workers, computeSynchronesChunk)
492cd9e7 203 else
c45fd663 204 lapply(indices_workers, computeSynchronesChunk)
492cd9e7 205
24ed5d83
BA
206 if (parll)
207 parallel::stopCluster(cl)
208
209 #TODO: can we avoid this loop? ( synchrones = sweep(synchrones, 1, counts, '/') )
492cd9e7 210 for (i in seq_len(K))
24ed5d83 211 synchrones[i,] = synchrones[i,] / counts[i,1]
3eef8d3d 212 #NOTE: odds for some clusters to be empty? (when series already come from stage 2)
8702eb86 213 # ...maybe; but let's hope resulting K1' be still quite bigger than K2
24ed5d83
BA
214 noNA_rows = sapply(seq_len(K), function(i) all(!is.nan(synchrones[i,])))
215 if (all(noNA_rows))
216 return (synchrones)
217 # Else: some clusters are empty, need to slice synchrones
218 synchrones[noNA_rows,]
e205f218 219}
1c6f223e 220
4bcfdbee
BA
221#' computeWerDists
222#'
223#' Compute the WER distances between the synchrones curves (in rows), which are
224#' returned (e.g.) by \code{computeSynchrones()}
225#'
24ed5d83
BA
226#' @param synchrones A big.matrix of synchrones, in rows. The series have same length
227#' as the series in the initial dataset
492cd9e7 228#' @inheritParams claws
4bcfdbee 229#'
777c4b02 230#' @return A matrix of size K1 x K1
24ed5d83 231#'
4bcfdbee 232#' @export
492cd9e7 233computeWerDists = function(synchrones, ncores_clust=1,verbose=FALSE,parll=TRUE)
d03c0621 234{
e161499b
BA
235 if (verbose)
236 cat(paste("--- Compute WER dists\n", sep=""))
24ed5d83 237
4bcfdbee
BA
238 n <- nrow(synchrones)
239 delta <- ncol(synchrones)
db6fc17d 240 #TODO: automatic tune of all these parameters ? (for other users)
d03c0621 241 nvoice <- 4
4bcfdbee 242 # noctave = 2^13 = 8192 half hours ~ 180 days ; ~log2(ncol(synchrones))
d7d55bc1
BA
243 noctave = 13
244 # 4 here represent 2^5 = 32 half-hours ~ 1 day
db6fc17d 245 #NOTE: default scalevector == 2^(0:(noctave * nvoice) / nvoice) * s0 (?)
24ed5d83 246 scalevector <- 2^(4:(noctave * nvoice) / nvoice + 1)
db6fc17d
BA
247 #condition: ( log2(s0*w0/(2*pi)) - 1 ) * nvoice + 1.5 >= 1
248 s0=2
249 w0=2*pi
250 scaled=FALSE
251 s0log = as.integer( (log2( s0*w0/(2*pi) ) - 1) * nvoice + 1.5 )
252 totnoct = noctave + as.integer(s0log/nvoice) + 1
253
e161499b
BA
254 Xwer_dist <- bigmemory::big.matrix(nrow=n, ncol=n, type="double")
255 fcoefs = rep(1/3, 3) #moving average on 3 values
256
257 # Generate n(n-1)/2 pairs for WER distances computations
258 pairs = list()
259 V = seq_len(n)
260 for (i in 1:n)
261 {
262 V = V[-1]
263 pairs = c(pairs, lapply(V, function(v) c(i,v)))
264 }
265
777c4b02 266 # Distance between rows i and j
e161499b
BA
267 computeDistancesIJ = function(pair)
268 {
363ae134
BA
269 require("bigmemory", quietly=TRUE)
270 require("epclust", quietly=TRUE)
271 synchrones <- bigmemory::attach.big.matrix(synchrones_desc)
272 Xwer_dist <- bigmemory::attach.big.matrix(Xwer_dist_desc)
273
274 computeCWT = function(i)
275 {
276 ts <- scale(ts(synchrones[i,]), center=TRUE, scale=scaled)
277 totts.cwt = Rwave::cwt(ts, totnoct, nvoice, w0, plot=FALSE)
278 ts.cwt = totts.cwt[,s0log:(s0log+noctave*nvoice)]
279 #Normalization
280 sqs <- sqrt(2^(0:(noctave*nvoice)/nvoice)*s0)
281 sqres <- sweep(ts.cwt,2,sqs,'*')
282 sqres / max(Mod(sqres))
283 }
284
e161499b
BA
285 i = pair[1] ; j = pair[2]
286 if (verbose && j==i+1)
287 cat(paste(" Distances (",i,",",j,"), (",i,",",j+1,") ...\n", sep=""))
288 cwt_i = computeCWT(i)
289 cwt_j = computeCWT(j)
363ae134
BA
290 num <- epclustFilter(Mod(cwt_i * Conj(cwt_j)))
291 WX <- epclustFilter(Mod(cwt_i * Conj(cwt_i)))
292 WY <- epclustFilter(Mod(cwt_j * Conj(cwt_j)))
e161499b
BA
293 wer2 <- sum(colSums(num)^2) / sum(colSums(WX) * colSums(WY))
294 Xwer_dist[i,j] <- sqrt(delta * ncol(cwt_i) * (1 - wer2))
295 Xwer_dist[j,i] <- Xwer_dist[i,j]
296 Xwer_dist[i,i] = 0.
297 }
298
492cd9e7
BA
299 if (parll)
300 {
301 cl = parallel::makeCluster(ncores_clust)
363ae134
BA
302 synchrones_desc <- bigmemory::describe(synchrones)
303 Xwer_dist_desc_desc <- bigmemory::describe(Xwer_dist)
304
305 parallel::clusterExport(cl, varlist=c("synchrones_desc","Xwer_dist_desc","totnoct",
306 "nvoice","w0","s0log","noctave","s0","verbose"), envir=environment())
492cd9e7
BA
307 }
308
e161499b 309 ignored <-
492cd9e7 310 if (parll)
e161499b 311 parallel::parLapply(cl, pairs, computeDistancesIJ)
492cd9e7 312 else
e161499b 313 lapply(pairs, computeDistancesIJ)
492cd9e7
BA
314
315 if (parll)
316 parallel::stopCluster(cl)
317
492cd9e7 318 Xwer_dist[n,n] = 0.
777c4b02
BA
319 distances <- Xwer_dist[,]
320 rm(Xwer_dist) ; gc()
321 distances #~small matrix K1 x K1
492cd9e7
BA
322}
323
324# Helper function to divide indices into balanced sets
325.spreadIndices = function(indices, nb_per_chunk)
326{
327 L = length(indices)
328 nb_workers = floor( L / nb_per_chunk )
329 if (nb_workers == 0)
330 {
331 # L < nb_series_per_chunk, simple case
332 indices_workers = list(indices)
333 }
334 else
335 {
336 indices_workers = lapply( seq_len(nb_workers), function(i)
337 indices[(nb_per_chunk*(i-1)+1):(nb_per_chunk*i)] )
338 # Spread the remaining load among the workers
339 rem = L %% nb_per_chunk
340 while (rem > 0)
341 {
342 index = rem%%nb_workers + 1
343 indices_workers[[index]] = c(indices_workers[[index]], indices[L-rem+1])
344 rem = rem - 1
d03c0621 345 }
1c6f223e 346 }
492cd9e7 347 indices_workers
1c6f223e 348}