Commit | Line | Data |
---|---|---|
3d69ff21 BA |
1 | #' @title get Forecast |
2 | #' | |
3 | #' @description Predict time-series curves for the selected days indices (lines in data). | |
3d69ff21 BA |
4 | #' |
5 | #' @param data Dataset, object of type \code{Data} output of \code{getData} | |
6 | #' @param indices Days indices where to forecast (the day after) | |
e030a6e3 | 7 | #' @param forecaster Name of the main forcaster |
3d69ff21 BA |
8 | #' \itemize{ |
9 | #' \item Persistence : use values of last (similar, next) day | |
e030a6e3 | 10 | #' \item Neighbors : use values from the k closest neighbors' tomorrows |
3d69ff21 | 11 | #' \item Average : global average of all the (similar) "tomorrow of past" |
e030a6e3 | 12 | #' \item Zero : just output 0 (benchmarking purpose) |
3d69ff21 | 13 | #' } |
e030a6e3 | 14 | #' @param pjump How to predict the jump at the interface between two days ? |
3d69ff21 BA |
15 | #' \itemize{ |
16 | #' \item Persistence : use last (similar) day values | |
e030a6e3 | 17 | #' \item Neighbors: re-use the weights optimized in corresponding forecaster |
3d69ff21 BA |
18 | #' \item Zero: just output 0 (no adjustment) |
19 | #' } | |
e030a6e3 BA |
20 | #' @param memory Data depth (in days) to be used for prediction |
21 | #' @param horizon Number of time steps to predict | |
3d69ff21 BA |
22 | #' @param ... Additional parameters for the forecasting models |
23 | #' | |
25b75559 BA |
24 | #' @return A list with the following items |
25 | #' \itemize{ | |
26 | #' \item serie: forecasted serie | |
27 | #' \item params: corresponding list of parameters (weights, neighbors...) | |
28 | #' \item index: corresponding index in data object | |
29 | #' } | |
3d69ff21 BA |
30 | #' |
31 | #' @examples | |
44a9990b BA |
32 | #' ts_data = system.file("extdata","pm10_mesures_H_loc.csv",package="talweg") |
33 | #' exo_data = system.file("extdata","meteo_extra_noNAs.csv",package="talweg") | |
34 | #' data = getData(ts_data, exo_data, input_tz = "Europe/Paris", | |
35 | #' working_tz="Europe/Paris", predict_at=7) | |
99f83c9a | 36 | #' pred = computeForecast(data, 2200:2230, "Persistence", "Persistence", 500, 12) |
3d69ff21 BA |
37 | #' \dontrun{#Sketch for real-time mode: |
38 | #' data = new("Data", ...) | |
e030a6e3 | 39 | #' forecaster = new(..., data=data) |
3d69ff21 BA |
40 | #' repeat { |
41 | #' data$append(some_new_data) | |
e030a6e3 | 42 | #' pred = forecaster$predict(data$getSize(), ...) |
3d69ff21 BA |
43 | #' #do_something_with_pred |
44 | #' }} | |
45 | #' @export | |
25b75559 | 46 | computeForecast = function(data, indices, forecaster, pjump, |
e030a6e3 | 47 | memory=Inf, horizon=data$getStdHorizon(), ...) |
3d69ff21 | 48 | { |
e030a6e3 | 49 | # (basic) Arguments sanity checks |
3d69ff21 BA |
50 | horizon = as.integer(horizon)[1] |
51 | if (horizon<=0 || horizon>length(data$getCenteredSerie(2))) | |
52 | stop("Horizon too short or too long") | |
09cf9c19 | 53 | indices = sapply( seq_along(indices), function(i) dateIndexToInteger(indices[i], data) ) |
3d69ff21 BA |
54 | if (any(indices<=0 | indices>data$getSize())) |
55 | stop("Indices out of range") | |
56 | indices = sapply(indices, dateIndexToInteger, data) | |
e5aa669a BA |
57 | if (!is.character(forecaster)) |
58 | stop("forecaster (name) should be of class character") #pjump could be NULL | |
3d69ff21 | 59 | |
25b75559 BA |
60 | pred = Forecast$new() |
61 | forecaster_class_name = getFromNamespace(paste(forecaster,"Forecaster",sep=""), "talweg") | |
62 | forecaster = forecaster_class_name$new(data=data, | |
63 | pjump = getFromNamespace(paste("get",pjump,"JumpPredict",sep=""), "talweg")) | |
3d69ff21 BA |
64 | for (today in indices) |
65 | { | |
25b75559 BA |
66 | pred$append( |
67 | new_serie = forecaster$predictSerie(today, memory, horizon, ...), | |
68 | new_params = forecaster$getParameters(), | |
69 | new_index = today | |
e030a6e3 | 70 | ) |
3d69ff21 | 71 | } |
25b75559 | 72 | pred |
3d69ff21 | 73 | } |