Commit | Line | Data |
---|---|---|
e030a6e3 | 1 | #' @include Forecaster.R |
3d69ff21 | 2 | #' |
e030a6e3 | 3 | #' @title Neighbors Forecaster |
3d69ff21 BA |
4 | #' |
5 | #' @description Predict tomorrow as a weighted combination of "futures of the past" days. | |
e030a6e3 BA |
6 | #' Inherits \code{\link{Forecaster}} |
7 | NeighborsForecaster = setRefClass( | |
8 | Class = "NeighborsForecaster", | |
9 | contains = "Forecaster", | |
3d69ff21 BA |
10 | |
11 | methods = list( | |
12 | initialize = function(...) | |
13 | { | |
14 | callSuper(...) | |
15 | }, | |
e030a6e3 | 16 | predictShape = function(today, memory, horizon, ...) |
3d69ff21 BA |
17 | { |
18 | # (re)initialize computed parameters | |
19 | params <<- list("weights"=NA, "indices"=NA, "window"=NA) | |
20 | ||
f17665c7 BA |
21 | # Get optional args |
22 | simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo" | |
23 | kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" | |
24 | if (hasArg(h_window)) | |
25 | return (.predictShapeAux(fdays,today,horizon,list(...)$h_window,kernel,simtype,TRUE)) | |
3d69ff21 | 26 | |
f17665c7 | 27 | # HACK for test reports: complete some days with a few NAs, for nicer graphics |
09cf9c19 BA |
28 | nas_in_serie = is.na(data$getSerie(today)) |
29 | if (any(nas_in_serie)) | |
30 | { | |
09cf9c19 BA |
31 | if (sum(nas_in_serie) >= length(nas_in_serie) / 2) |
32 | return (NA) | |
33 | for (i in seq_along(nas_in_serie)) | |
34 | { | |
35 | if (nas_in_serie[i]) | |
36 | { | |
37 | #look left | |
38 | left = i-1 | |
39 | while (left>=1 && nas_in_serie[left]) | |
40 | left = left-1 | |
41 | #look right | |
42 | right = i+1 | |
43 | while (right<=length(nas_in_serie) && nas_in_serie[right]) | |
44 | right = right+1 | |
45 | #HACK: modify by-reference Data object... | |
46 | data$data[[today]]$serie[i] <<- | |
47 | if (left==0) data$data[[today]]$serie[right] | |
48 | else if (right==0) data$data[[today]]$serie[left] | |
49 | else (data$data[[today]]$serie[left] + data$data[[today]]$serie[right]) / 2. | |
50 | } | |
51 | } | |
52 | } | |
3d69ff21 BA |
53 | |
54 | # Determine indices of no-NAs days followed by no-NAs tomorrows | |
f17665c7 BA |
55 | first_day = max(today - memory, 1) |
56 | fdays = (first_day:(today-1))[ sapply(first_day:(today-1), function(i) { | |
57 | !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) | |
58 | }) ] | |
3d69ff21 | 59 | |
f17665c7 BA |
60 | # Indices of similar days for cross-validation; TODO: 45 = magic number |
61 | sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE) | |
3d69ff21 BA |
62 | |
63 | # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days | |
64 | errorOnLastNdays = function(h, kernel, simtype) | |
65 | { | |
66 | error = 0 | |
67 | nb_jours = 0 | |
f17665c7 | 68 | for (i in intersect(fdays,sdays)) |
3d69ff21 | 69 | { |
f17665c7 BA |
70 | # mix_strategy is never used here (simtype != "mix"), therefore left blank |
71 | prediction = .predictShapeAux(fdays, i, horizon, h, kernel, simtype, FALSE) | |
72 | if (!is.na(prediction[1])) | |
3d69ff21 BA |
73 | { |
74 | nb_jours = nb_jours + 1 | |
f17665c7 | 75 | error = error + mean((data$getCenteredSerie(i+1)[1:horizon] - prediction)^2) |
3d69ff21 BA |
76 | } |
77 | } | |
78 | return (error / nb_jours) | |
79 | } | |
80 | ||
f17665c7 BA |
81 | if (simtype != "endo") |
82 | h_best_exo = optimize(errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum | |
3d69ff21 | 83 | if (simtype != "exo") |
f17665c7 | 84 | h_best_endo = optimize(errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum |
3d69ff21 BA |
85 | |
86 | if (simtype == "endo") | |
f17665c7 | 87 | return (.predictShapeAux(fdays, today, horizon, h_best_endo, kernel, "endo", TRUE)) |
3d69ff21 | 88 | if (simtype == "exo") |
f17665c7 | 89 | return (.predictShapeAux(fdays, today, horizon, h_best_exo, kernel, "exo", TRUE)) |
3d69ff21 BA |
90 | if (simtype == "mix") |
91 | { | |
f17665c7 BA |
92 | h_best_mix = c(h_best_endo,h_best_exo) |
93 | return (.predictShapeAux(fdays, today, horizon, h_best_mix, kernel, "mix", TRUE)) | |
3d69ff21 BA |
94 | } |
95 | }, | |
96 | # Precondition: "today" is full (no NAs) | |
f17665c7 | 97 | .predictShapeAux = function(fdays, today, horizon, h, kernel, simtype, final_call) |
3d69ff21 BA |
98 | { |
99 | dat = data$data #HACK: faster this way... | |
100 | ||
f17665c7 | 101 | fdays = fdays[ fdays < today ] |
3d69ff21 | 102 | # TODO: 3 = magic number |
f17665c7 | 103 | if (length(fdays) < 3) |
3d69ff21 BA |
104 | return (NA) |
105 | ||
106 | if (simtype != "exo") | |
107 | { | |
108 | h_endo = ifelse(simtype=="mix", h[1], h) | |
109 | ||
110 | # Distances from last observed day to days in the past | |
f17665c7 BA |
111 | distances2 = rep(NA, length(fdays)) |
112 | for (i in seq_along(fdays)) | |
3d69ff21 | 113 | { |
f17665c7 | 114 | delta = dat[[today]]$serie - dat[[ fdays[i] ]]$serie |
3d69ff21 BA |
115 | # Require at least half of non-NA common values to compute the distance |
116 | if (sum(is.na(delta)) <= 0) #length(delta)/2) | |
117 | distances2[i] = mean(delta^2) #, na.rm=TRUE) | |
118 | } | |
119 | ||
120 | sd_dist = sd(distances2) | |
99f83c9a BA |
121 | if (sd_dist < .Machine$double.eps) |
122 | sd_dist = 1 #mostly for tests... FIXME: | |
3d69ff21 | 123 | simils_endo = |
99f83c9a | 124 | if (kernel=="Gauss") |
3d69ff21 | 125 | exp(-distances2/(sd_dist*h_endo^2)) |
99f83c9a | 126 | else { #Epanechnikov |
3d69ff21 BA |
127 | u = 1 - distances2/(sd_dist*h_endo^2) |
128 | u[abs(u)>1] = 0. | |
129 | u | |
130 | } | |
131 | } | |
132 | ||
133 | if (simtype != "endo") | |
134 | { | |
135 | h_exo = ifelse(simtype=="mix", h[2], h) | |
136 | ||
f17665c7 | 137 | M = matrix( nrow=1+length(fdays), ncol=1+length(dat[[today]]$exo) ) |
dea7ff86 | 138 | M[1,] = c( dat[[today]]$level, as.double(dat[[today]]$exo) ) |
f17665c7 BA |
139 | for (i in seq_along(fdays)) |
140 | M[i+1,] = c( dat[[ fdays[i] ]]$level, as.double(dat[[ fdays[i] ]]$exo) ) | |
3d69ff21 BA |
141 | |
142 | sigma = cov(M) #NOTE: robust covariance is way too slow | |
613a986f | 143 | sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed? |
3d69ff21 BA |
144 | |
145 | # Distances from last observed day to days in the past | |
146 | distances2 = rep(NA, nrow(M)-1) | |
147 | for (i in 2:nrow(M)) | |
148 | { | |
149 | delta = M[1,] - M[i,] | |
150 | distances2[i-1] = delta %*% sigma_inv %*% delta | |
151 | } | |
152 | ||
153 | sd_dist = sd(distances2) | |
154 | simils_exo = | |
f17665c7 | 155 | if (kernel=="Gauss") |
3d69ff21 | 156 | exp(-distances2/(sd_dist*h_exo^2)) |
f17665c7 | 157 | else { #Epanechnikov |
3d69ff21 BA |
158 | u = 1 - distances2/(sd_dist*h_exo^2) |
159 | u[abs(u)>1] = 0. | |
160 | u | |
161 | } | |
162 | } | |
163 | ||
3d69ff21 | 164 | similarities = |
f17665c7 | 165 | if (simtype == "exo") |
3d69ff21 | 166 | simils_exo |
f17665c7 BA |
167 | else if (simtype == "endo") |
168 | simils_endo | |
169 | else #mix | |
170 | simils_endo * simils_exo | |
3d69ff21 BA |
171 | |
172 | prediction = rep(0, horizon) | |
173 | for (i in seq_along(fdays_indices)) | |
174 | prediction = prediction + similarities[i] * dat[[ fdays_indices[i]+1 ]]$serie[1:horizon] | |
3d69ff21 | 175 | prediction = prediction / sum(similarities, na.rm=TRUE) |
99f83c9a | 176 | |
3d69ff21 BA |
177 | if (final_call) |
178 | { | |
179 | params$weights <<- similarities | |
180 | params$indices <<- fdays_indices | |
181 | params$window <<- | |
182 | if (simtype=="endo") { | |
183 | h_endo | |
184 | } else if (simtype=="exo") { | |
185 | h_exo | |
f17665c7 | 186 | } else { #mix |
3d69ff21 BA |
187 | c(h_endo,h_exo) |
188 | } | |
189 | } | |
99f83c9a | 190 | |
3d69ff21 BA |
191 | return (prediction) |
192 | } | |
193 | ) | |
194 | ) |