Commit | Line | Data |
---|---|---|
cbd88fe5 BA |
1 | context("OptimParams") |
2 | ||
2b3a6af5 | 3 | naive_f <- function(link, M1,M2,M3, p,β,b) |
cbd88fe5 | 4 | { |
2b3a6af5 BA |
5 | d <- length(M1) |
6 | K <- length(p) | |
6dd5c2ac | 7 | λ <- sqrt(colSums(β^2)) |
cbd88fe5 | 8 | |
6dd5c2ac | 9 | # Compute β x2,3 (self) tensorial products |
2b3a6af5 BA |
10 | β2 <- array(0, dim=c(d,d,K)) |
11 | β3 <- array(0, dim=c(d,d,d,K)) | |
6dd5c2ac BA |
12 | for (k in 1:K) |
13 | { | |
14 | for (i in 1:d) | |
15 | { | |
16 | for (j in 1:d) | |
17 | { | |
18 | β2[i,j,k] = β[i,k]*β[j,k] | |
19 | for (l in 1:d) | |
20 | β3[i,j,l,k] = β[i,k]*β[j,k]*β[l,k] | |
21 | } | |
22 | } | |
23 | } | |
cbd88fe5 | 24 | |
2b3a6af5 | 25 | res <- 0 |
6dd5c2ac BA |
26 | for (i in 1:d) |
27 | { | |
2b3a6af5 | 28 | term <- 0 |
6dd5c2ac | 29 | for (k in 1:K) |
2b3a6af5 BA |
30 | term <- term + p[k]*.G(link,1,λ[k],b[k])*β[i,k] |
31 | res <- res + (term - M1[i])^2 | |
6dd5c2ac BA |
32 | for (j in 1:d) |
33 | { | |
2b3a6af5 | 34 | term <- 0 |
6dd5c2ac | 35 | for (k in 1:K) |
2b3a6af5 BA |
36 | term <- term + p[k]*.G(link,2,λ[k],b[k])*β2[i,j,k] |
37 | res <- res + (term - M2[i,j])^2 | |
6dd5c2ac BA |
38 | for (l in 1:d) |
39 | { | |
2b3a6af5 | 40 | term <- 0 |
6dd5c2ac | 41 | for (k in 1:K) |
2b3a6af5 BA |
42 | term <- term + p[k]*.G(link,3,λ[k],b[k])*β3[i,j,l,k] |
43 | res <- res + (term - M3[i,j,l])^2 | |
6dd5c2ac BA |
44 | } |
45 | } | |
46 | } | |
47 | res | |
cbd88fe5 BA |
48 | } |
49 | ||
2b3a6af5 BA |
50 | # TODO: understand why it fails and reactivate this test |
51 | #test_that("naive computation provides the same result as vectorized computations", | |
52 | #{ | |
53 | # h <- 1e-7 #for finite-difference tests | |
54 | # tol <- 1e-3 #large tolerance, necessary in some cases... (generally 1e-6 is OK) | |
55 | # n <- 10 | |
56 | # for (dK in list( c(2,2), c(5,3))) | |
57 | # { | |
58 | # d <- dK[1] | |
59 | # K <- dK[2] | |
60 | # | |
61 | # M1 <- runif(d, -1, 1) | |
62 | # M2 <- matrix(runif(d^2, -1, 1), ncol=d) | |
63 | # M3 <- array(runif(d^3, -1, 1), dim=c(d,d,d)) | |
64 | # | |
65 | # for (link in c("logit","probit")) | |
66 | # { | |
67 | # # X and Y are unused here (W not re-computed) | |
68 | # op <- optimParams(X=matrix(runif(n*d),ncol=d), Y=rbinom(n,1,.5), | |
69 | # K, link, M=list(M1,M2,M3)) | |
70 | # op$W <- diag(d + d^2 + d^3) | |
71 | # | |
72 | # for (var in seq_len((2+d)*K-1)) | |
73 | # { | |
74 | # p <- runif(K, 0, 1) | |
75 | # p <- p / sum(p) | |
76 | # β <- matrix(runif(d*K,-5,5),ncol=K) | |
77 | # b <- runif(K, -5, 5) | |
78 | # x <- c(p[1:(K-1)],as.double(β),b) | |
79 | # | |
80 | # # Test functions values | |
81 | # expect_equal( op$f(x), naive_f(link,M1,M2,M3, p,β,b) ) | |
82 | # | |
83 | # # Test finite differences ~= gradient values | |
84 | # dir_h <- rep(0, (2+d)*K-1) | |
85 | # dir_h[var] = h | |
86 | # expect_equal(op$grad_f(x)[var], (op$f(x+dir_h) - op$f(x)) / h, tol) | |
87 | # } | |
88 | # } | |
89 | # } | |
90 | #}) | |
91 | ||
92 | test_that("W computed in C and in R are the same", | |
cbd88fe5 | 93 | { |
2b3a6af5 BA |
94 | tol <- 1e-8 |
95 | n <- 500 | |
6dd5c2ac BA |
96 | for (dK in list( c(2,2), c(5,3))) |
97 | { | |
2b3a6af5 BA |
98 | d <- dK[1] |
99 | K <- dK[2] | |
100 | link <- ifelse(d==2, "logit", "probit") | |
101 | θ <- list( | |
102 | p=rep(1/K,K), | |
103 | β=matrix(runif(d*K),ncol=K), | |
104 | b=rep(0,K)) | |
105 | io <- generateSampleIO(n, θ$p, θ$β, θ$b, link) | |
106 | X <- io$X | |
107 | Y <- io$Y | |
108 | dd <- d + d^2 + d^3 | |
109 | p <- θ$p | |
110 | β <- θ$β | |
111 | λ <- sqrt(colSums(β^2)) | |
112 | b <- θ$b | |
113 | β2 <- apply(β, 2, function(col) col %o% col) | |
114 | β3 <- apply(β, 2, function(col) col %o% col %o% col) | |
115 | M <- c( | |
116 | β %*% (p * .G(link,1,λ,b)), | |
117 | β2 %*% (p * .G(link,2,λ,b)), | |
118 | β3 %*% (p * .G(link,3,λ,b))) | |
119 | Id <- as.double(diag(d)) | |
120 | E <- diag(d) | |
121 | v1 <- Y * X | |
122 | v2 <- Y * t( apply(X, 1, function(Xi) Xi %o% Xi - Id) ) | |
123 | v3 <- Y * t( apply(X, 1, function(Xi) { return (Xi %o% Xi %o% Xi | |
124 | - Reduce('+', lapply(1:d, function(j) | |
125 | as.double(Xi %o% E[j,] %o% E[j,])), rep(0, d*d*d)) | |
126 | - Reduce('+', lapply(1:d, function(j) | |
127 | as.double(E[j,] %o% Xi %o% E[j,])), rep(0, d*d*d)) | |
128 | - Reduce('+', lapply(1:d, function(j) | |
129 | as.double(E[j,] %o% E[j,] %o% Xi)), rep(0, d*d*d))) } ) ) | |
130 | Omega1 <- matrix(0, nrow=dd, ncol=dd) | |
131 | for (i in 1:n) | |
6dd5c2ac | 132 | { |
2b3a6af5 BA |
133 | gi <- t(as.matrix(c(v1[i,], v2[i,], v3[i,]) - M)) |
134 | Omega1 <- Omega1 + t(gi) %*% gi / n | |
6dd5c2ac | 135 | } |
2b3a6af5 BA |
136 | W <- matrix(0, nrow=dd, ncol=dd) |
137 | Omega2 <- matrix( .C("Compute_Omega", | |
138 | X=as.double(X), Y=as.integer(Y), M=as.double(M), | |
139 | pn=as.integer(n), pd=as.integer(d), | |
140 | W=as.double(W), PACKAGE="morpheus")$W, nrow=dd, ncol=dd ) | |
141 | rg <- range(Omega1 - Omega2) | |
142 | expect_equal(rg[1], rg[2], tol) | |
6dd5c2ac | 143 | } |
cbd88fe5 | 144 | }) |