Commit | Line | Data |
---|---|---|
cbd88fe5 BA |
1 | /******************************************************************** |
2 | ******************************************************************** | |
3 | ** | |
4 | ** libhungarian by Cyrill Stachniss, 2004 | |
5 | ** Modified by Benjamin Auder to work on floating point number, | |
6 | ** and to fit into a R package (2017) | |
7 | ** | |
8 | ** Solving the Minimum Assignment Problem using the Hungarian Method. | |
9 | ** | |
10 | ** ** This file may be freely copied and distributed! ** | |
11 | ** | |
12 | ** Parts of the used code was originally provided by the | |
13 | ** "Stanford GraphGase", but I made changes to this code. | |
14 | ** As asked by the copyright node of the "Stanford GraphGase", | |
15 | ** I hereby proclaim that this file are *NOT* part of the | |
16 | ** "Stanford GraphGase" distrubition! | |
17 | ** | |
18 | ** This file is distributed in the hope that it will be useful, | |
19 | ** but WITHOUT ANY WARRANTY; without even the implied | |
20 | ** warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR | |
21 | ** PURPOSE. | |
22 | ** | |
23 | ******************************************************************** | |
24 | ********************************************************************/ | |
25 | ||
26 | #include <stdio.h> | |
27 | #include <stdlib.h> | |
28 | ||
29 | #define HUNGARIAN_NOT_ASSIGNED 0 | |
30 | #define HUNGARIAN_ASSIGNED 1 | |
31 | ||
32 | #define HUNGARIAN_MODE_MINIMIZE_COST 0 | |
33 | #define HUNGARIAN_MODE_MAXIMIZE_UTIL 1 | |
34 | ||
35 | #define INF (1e32) | |
36 | #define verbose (0) | |
37 | ||
38 | typedef struct { | |
39 | int num_rows; | |
40 | int num_cols; | |
41 | double** cost; | |
42 | int** assignment; | |
43 | } hungarian_problem_t; | |
44 | ||
45 | int hungarian_imax(int a, int b) { | |
46 | return (a<b)?b:a; | |
47 | } | |
48 | ||
49 | /** This method initialize the hungarian_problem structure and init | |
50 | * the cost matrices (missing lines or columns are filled with 0). | |
51 | * It returns the size of the quadratic(!) assignment matrix. **/ | |
52 | int hungarian_init(hungarian_problem_t* p, double** cost_matrix, int rows, int cols, | |
53 | int mode) | |
54 | { | |
55 | int i,j; | |
56 | double max_cost = 0.; | |
57 | int org_cols = cols, | |
58 | org_rows = rows; | |
59 | ||
60 | // is the number of cols not equal to number of rows ? | |
61 | // if yes, expand with 0-cols / 0-cols | |
62 | rows = hungarian_imax(cols, rows); | |
63 | cols = rows; | |
64 | ||
65 | p->num_rows = rows; | |
66 | p->num_cols = cols; | |
67 | ||
68 | p->cost = (double**)calloc(rows,sizeof(double*)); | |
69 | p->assignment = (int**)calloc(rows,sizeof(int*)); | |
70 | ||
71 | for(i=0; i<p->num_rows; i++) { | |
72 | p->cost[i] = (double*)calloc(cols,sizeof(double)); | |
73 | p->assignment[i] = (int*)calloc(cols,sizeof(int)); | |
74 | for(j=0; j<p->num_cols; j++) { | |
75 | p->cost[i][j] = (i < org_rows && j < org_cols) ? cost_matrix[i][j] : 0.; | |
76 | p->assignment[i][j] = 0; | |
77 | ||
78 | if (max_cost < p->cost[i][j]) | |
79 | max_cost = p->cost[i][j]; | |
80 | } | |
81 | } | |
82 | ||
83 | if (mode == HUNGARIAN_MODE_MAXIMIZE_UTIL) { | |
84 | for(i=0; i<p->num_rows; i++) { | |
85 | for(j=0; j<p->num_cols; j++) | |
86 | p->cost[i][j] = max_cost - p->cost[i][j]; | |
87 | } | |
88 | } | |
89 | else if (mode == HUNGARIAN_MODE_MINIMIZE_COST) { | |
90 | // nothing to do | |
91 | } | |
92 | // else | |
324febd3 | 93 | // fprintf(stderr,"%s: unknown mode. Mode was set to HUNGARIAN_MODE_MINIMIZE_COST !\n", __FUNCTION__); |
cbd88fe5 BA |
94 | |
95 | return rows; | |
96 | } | |
97 | ||
98 | /** Free the memory allocated by init. **/ | |
99 | void hungarian_free(hungarian_problem_t* p) { | |
100 | int i; | |
101 | for(i=0; i<p->num_rows; i++) { | |
102 | free(p->cost[i]); | |
103 | free(p->assignment[i]); | |
104 | } | |
105 | free(p->cost); | |
106 | free(p->assignment); | |
107 | p->cost = NULL; | |
108 | p->assignment = NULL; | |
109 | } | |
110 | ||
111 | /** This method computes the optimal assignment. **/ | |
112 | void hungarian_solve(hungarian_problem_t* p) | |
113 | { | |
114 | int i, j, m, n, k, l, t, q, unmatched; | |
115 | double cost, s; | |
116 | int* col_mate; | |
117 | int* row_mate; | |
118 | int* parent_row; | |
119 | int* unchosen_row; | |
120 | double* row_dec; | |
121 | double* col_inc; | |
122 | double* slack; | |
123 | int* slack_row; | |
124 | ||
125 | cost = 0.; | |
126 | m =p->num_rows; | |
127 | n =p->num_cols; | |
128 | ||
129 | col_mate = (int*)calloc(p->num_rows,sizeof(int)); | |
130 | unchosen_row = (int*)calloc(p->num_rows,sizeof(int)); | |
131 | row_dec = (double*)calloc(p->num_rows,sizeof(double)); | |
132 | slack_row = (int*)calloc(p->num_rows,sizeof(int)); | |
133 | ||
134 | row_mate = (int*)calloc(p->num_cols,sizeof(int)); | |
135 | parent_row = (int*)calloc(p->num_cols,sizeof(int)); | |
136 | col_inc = (double*)calloc(p->num_cols,sizeof(double)); | |
137 | slack = (double*)calloc(p->num_cols,sizeof(double)); | |
138 | ||
139 | for (i=0; i<p->num_rows; i++) { | |
140 | col_mate[i]=0; | |
141 | unchosen_row[i]=0; | |
142 | row_dec[i]=0.; | |
143 | slack_row[i]=0; | |
144 | } | |
145 | for (j=0; j<p->num_cols; j++) { | |
146 | row_mate[j]=0; | |
147 | parent_row[j] = 0; | |
148 | col_inc[j]=0.; | |
149 | slack[j]=0.; | |
150 | } | |
151 | ||
152 | for (i=0; i<p->num_rows; ++i) | |
153 | for (j=0; j<p->num_cols; ++j) | |
154 | p->assignment[i][j]=HUNGARIAN_NOT_ASSIGNED; | |
155 | ||
156 | // Begin subtract column minima in order to start with lots of zeroes 12 | |
157 | for (l=0; l<n; l++) | |
158 | { | |
159 | s=p->cost[0][l]; | |
160 | for (k=1; k<m; k++) | |
161 | if (p->cost[k][l]<s) | |
162 | s=p->cost[k][l]; | |
163 | cost+=s; | |
164 | if (s!=0.) | |
165 | for (k=0; k<m; k++) | |
166 | p->cost[k][l]-=s; | |
167 | } | |
168 | // End subtract column minima in order to start with lots of zeroes 12 | |
169 | ||
170 | // Begin initial state 16 | |
171 | t=0; | |
172 | for (l=0; l<n; l++) | |
173 | { | |
174 | row_mate[l]= -1; | |
175 | parent_row[l]= -1; | |
176 | col_inc[l]=0.; | |
177 | slack[l]=INF; | |
178 | } | |
179 | for (k=0; k<m; k++) | |
180 | { | |
181 | s=p->cost[k][0]; | |
182 | for (l=1; l<n; l++) | |
183 | if (p->cost[k][l]<s) | |
184 | s=p->cost[k][l]; | |
185 | row_dec[k]=s; | |
186 | for (l=0; l<n; l++) | |
187 | if (s==p->cost[k][l] && row_mate[l]<0) | |
188 | { | |
189 | col_mate[k]=l; | |
190 | row_mate[l]=k; | |
191 | goto row_done; | |
192 | } | |
193 | col_mate[k]= -1; | |
194 | unchosen_row[t++]=k; | |
195 | row_done: | |
196 | ; | |
197 | } | |
198 | // End initial state 16 | |
199 | ||
200 | // Begin Hungarian algorithm 18 | |
201 | if (t==0) | |
202 | goto done; | |
203 | unmatched=t; | |
204 | while (1) | |
205 | { | |
206 | q=0; | |
207 | while (1) | |
208 | { | |
209 | while (q<t) | |
210 | { | |
211 | // Begin explore node q of the forest 19 | |
212 | { | |
213 | k=unchosen_row[q]; | |
214 | s=row_dec[k]; | |
215 | for (l=0; l<n; l++) | |
216 | if (slack[l] > 0.) | |
217 | { | |
218 | double del=p->cost[k][l]-s+col_inc[l]; | |
219 | if (del<slack[l]) | |
220 | { | |
221 | if (del==0.) | |
222 | { | |
223 | if (row_mate[l]<0) | |
224 | goto breakthru; | |
225 | slack[l]=0.; | |
226 | parent_row[l]=k; | |
227 | unchosen_row[t++]=row_mate[l]; | |
228 | } | |
229 | else | |
230 | { | |
231 | slack[l]=del; | |
232 | slack_row[l]=k; | |
233 | } | |
234 | } | |
235 | } | |
236 | } | |
237 | // End explore node q of the forest 19 | |
238 | q++; | |
239 | } | |
240 | ||
241 | // Begin introduce a new zero into the matrix 21 | |
242 | s=INF; | |
243 | for (l=0; l<n; l++) | |
244 | if (slack[l]>0. && slack[l]<s) | |
245 | s=slack[l]; | |
246 | for (q=0; q<t; q++) | |
247 | row_dec[unchosen_row[q]]+=s; | |
248 | for (l=0; l<n; l++) | |
249 | if (slack[l]>0.) | |
250 | { | |
251 | slack[l]-=s; | |
252 | if (slack[l]==0.) | |
253 | { | |
254 | // Begin look at a new zero 22 | |
255 | k=slack_row[l]; | |
256 | if (row_mate[l]<0) | |
257 | { | |
258 | for (j=l+1; j<n; j++) | |
259 | if (slack[j]==0.) | |
260 | col_inc[j]+=s; | |
261 | goto breakthru; | |
262 | } | |
263 | else | |
264 | { | |
265 | parent_row[l]=k; | |
266 | unchosen_row[t++]=row_mate[l]; | |
267 | } | |
268 | // End look at a new zero 22 | |
269 | } | |
270 | } | |
271 | else | |
272 | col_inc[l]+=s; | |
273 | // End introduce a new zero into the matrix 21 | |
274 | } | |
275 | breakthru: | |
276 | // Begin update the matching 20 | |
277 | while (1) | |
278 | { | |
279 | j=col_mate[k]; | |
280 | col_mate[k]=l; | |
281 | row_mate[l]=k; | |
282 | if (j<0) | |
283 | break; | |
284 | k=parent_row[j]; | |
285 | l=j; | |
286 | } | |
287 | // End update the matching 20 | |
288 | if (--unmatched==0) | |
289 | goto done; | |
290 | // Begin get ready for another stage 17 | |
291 | t=0; | |
292 | for (l=0; l<n; l++) | |
293 | { | |
294 | parent_row[l]= -1; | |
295 | slack[l]=INF; | |
296 | } | |
297 | for (k=0; k<m; k++) | |
298 | if (col_mate[k]<0) | |
299 | unchosen_row[t++]=k; | |
300 | // End get ready for another stage 17 | |
301 | } | |
302 | done: | |
303 | ||
304 | /* // Begin doublecheck the solution 23 | |
305 | for (k=0; k<m; k++) | |
306 | for (l=0; l<n; l++) | |
307 | if (p->cost[k][l]<row_dec[k]-col_inc[l]) | |
308 | exit(0); | |
309 | for (k=0; k<m; k++) | |
310 | { | |
311 | l=col_mate[k]; | |
312 | if (l<0 || p->cost[k][l]!=row_dec[k]-col_inc[l]) | |
313 | exit(0); | |
314 | } | |
315 | k=0; | |
316 | for (l=0; l<n; l++) | |
317 | if (col_inc[l]) | |
318 | k++; | |
319 | if (k>m) | |
320 | exit(0); | |
321 | // End doublecheck the solution 23 | |
322 | */ // End Hungarian algorithm 18 | |
323 | ||
324 | for (i=0; i<m; ++i) | |
325 | { | |
326 | p->assignment[i][col_mate[i]]=HUNGARIAN_ASSIGNED; | |
327 | /*TRACE("%d - %d\n", i, col_mate[i]);*/ | |
328 | } | |
329 | for (k=0; k<m; ++k) | |
330 | { | |
331 | for (l=0; l<n; ++l) | |
332 | { | |
333 | /*TRACE("%d ",p->cost[k][l]-row_dec[k]+col_inc[l]);*/ | |
334 | p->cost[k][l]=p->cost[k][l]-row_dec[k]+col_inc[l]; | |
335 | } | |
336 | /*TRACE("\n");*/ | |
337 | } | |
338 | for (i=0; i<m; i++) | |
339 | cost+=row_dec[i]; | |
340 | for (i=0; i<n; i++) | |
341 | cost-=col_inc[i]; | |
342 | ||
343 | free(slack); | |
344 | free(col_inc); | |
345 | free(parent_row); | |
346 | free(row_mate); | |
347 | free(slack_row); | |
348 | free(row_dec); | |
349 | free(unchosen_row); | |
350 | free(col_mate); | |
351 | } | |
352 | ||
353 | ||
354 | /*************** | |
355 | * Usage in R : | |
356 | **************/ | |
357 | ||
358 | // Auxiliary function for hungarianAlgorithm below | |
359 | double** array_to_matrix(double* m, int rows, int cols) | |
360 | { | |
361 | double** r = (double**)calloc(rows,sizeof(double*)); | |
362 | for (int i=0; i<rows; i++) | |
363 | { | |
364 | r[i] = (double*)calloc(cols,sizeof(double)); | |
365 | for (int j=0; j<cols; j++) | |
366 | r[i][j] = m[i*cols+j]; | |
367 | } | |
368 | return r; | |
369 | } | |
370 | ||
371 | //TODO: re-code this algorithm in a more readable way, based on | |
324febd3 | 372 | //https://www.topcoder.com/community/data-science/data-science-tutorials/assignment-problem-and-hungarian-algorithm/ |
cbd88fe5 BA |
373 | // Get the optimal assignment, by calling hungarian_solve above; "distances" in columns |
374 | void hungarianAlgorithm(double* distances, int* pn, int* assignment) | |
375 | { | |
376 | int n = *pn; | |
377 | double** mat = array_to_matrix(distances, n, n); | |
378 | ||
379 | hungarian_problem_t p; | |
380 | hungarian_init(&p, mat, n, n, HUNGARIAN_MODE_MINIMIZE_COST); | |
381 | ||
382 | hungarian_solve(&p); | |
383 | ||
384 | // Copy the optimal assignment in a R-friendly structure | |
385 | for (int i=0; i < n; i++) { | |
386 | for (int j=0; j < n; j++) { | |
387 | if (p.assignment[i][j]) | |
388 | assignment[i] = j+1; //add 1 since we work with R | |
389 | } | |
390 | } | |
391 | ||
392 | hungarian_free(&p); | |
393 | for (int i=0; i<n; i++) | |
394 | free(mat[i]); | |
395 | free(mat); | |
396 | } |