b91d512b23b6b1cd82eb4f8689e96ea44448b420
[epclust.git] / epclust / R / clustering.R
1 #' Two-stage clustering, within one task (see \code{claws()})
2 #'
3 #' \code{clusteringTask1()} runs one full stage-1 task, which consists in iterated
4 #' stage 1 clustering on nb_curves / ntasks energy contributions, computed through
5 #' discrete wavelets coefficients.
6 #' \code{clusteringTask2()} runs a full stage-2 task, which consists in WER distances
7 #' computations between medoids (indices) output from stage 1, before applying
8 #' the second clustering algorithm on the distances matrix.
9 #'
10 #' @param getContribs Function to retrieve contributions from initial series indices:
11 #' \code{getContribs(indices)} outputs a contributions matrix
12 #' @inheritParams claws
13 #' @inheritParams computeSynchrones
14 #' @inheritParams computeWerDists
15 #'
16 #' @return The indices of the computed (resp. K1 and K2) medoids.
17 #'
18 #' @name clustering
19 #' @rdname clustering
20 #' @aliases clusteringTask1 clusteringTask2
21 NULL
22
23 #' @rdname clustering
24 #' @export
25 clusteringTask1 = function(indices, getContribs, K1, algoClust1, nb_items_clust,
26 ncores_clust=1, verbose=FALSE, parll=TRUE)
27 {
28 if (parll)
29 {
30 cl = parallel::makeCluster(ncores_clust, outfile = "")
31 parallel::clusterExport(cl, c("getContribs","K1","verbose"), envir=environment())
32 }
33 # Iterate clustering algorithm 1 until K1 medoids are found
34 while (length(indices) > K1)
35 {
36 # Balance tasks by splitting the indices set - as evenly as possible
37 indices_workers = .splitIndices(indices, nb_items_clust, min_size=K1+1)
38 if (verbose)
39 cat(paste("*** [iterated] Clustering task 1 on ",length(indices)," series\n", sep=""))
40 indices <-
41 if (parll)
42 {
43 unlist( parallel::parLapply(cl, indices_workers, function(inds) {
44 require("epclust", quietly=TRUE)
45 inds[ algoClust1(getContribs(inds), K1) ]
46 }) )
47 }
48 else
49 {
50 unlist( lapply(indices_workers, function(inds)
51 inds[ algoClust1(getContribs(inds), K1) ]
52 ) )
53 }
54 }
55 if (parll)
56 parallel::stopCluster(cl)
57
58 indices #medoids
59 }
60
61 #' @rdname clustering
62 #' @export
63 clusteringTask2 = function(indices, getSeries, K2, algoClust2, nb_series_per_chunk,
64 nvoice, nbytes, endian, ncores_clust=1, verbose=FALSE, parll=TRUE)
65 {
66 if (verbose)
67 cat(paste("*** Clustering task 2 on ",length(indices)," medoids\n", sep=""))
68
69 if (length(indices) <= K2)
70 return (indices)
71
72 # A) Compute the WER distances (Wavelets Extended coefficient of deteRmination)
73 distances = computeWerDists(indices, getSeries, nb_series_per_chunk,
74 nvoice, nbytes, endian, ncores_clust, verbose, parll)
75
76 # B) Apply clustering algorithm 2 on the WER distances matrix
77 if (verbose)
78 cat(paste("*** algoClust2() on ",nrow(distances)," items\n", sep=""))
79 indices[ algoClust2(distances,K2) ]
80 }