1 #' Among a collection of models, this function constructs a subcollection of models with
2 #' models having strictly different dimensions, keeping the model which minimizes
3 #' the likelihood if there were several with the same dimension
5 #' @param LLF a matrix, the first column corresponds to likelihoods for several models
6 #' the second column corresponds to the dimensions of the corresponding models.
8 #' @return a list with indices, a vector of indices selected models,
9 #' and D1, a vector of corresponding dimensions
12 modelSelection = function(LLF)
17 indices = rep(1, length(D1))
21 for (i in 1:length(D1))
24 for (j in 1:length(D))
30 #indices[i] : first indices of the binary vector where u_i ==1
31 indices[i] = which.max(LLF == b)
35 return (list(indices=indices,D1=D1))
39 ## Programme qui sélectionne un modèle
40 ## proposer à l'utilisation différents critères (BIC, AIC, slope heuristic)