| 1 | #' Optimize parameters |
| 2 | #' |
| 3 | #' Optimize the parameters of a mixture of logistic regressions model, possibly using |
| 4 | #' \code{mu <- computeMu(...)} as a partial starting point. |
| 5 | #' |
| 6 | #' @param K Number of populations. |
| 7 | #' @param link The link type, 'logit' or 'probit'. |
| 8 | #' @param optargs a list with optional arguments: |
| 9 | #' \itemize{ |
| 10 | #' \item 'M' : list of moments of order 1,2,3: will be computed if not provided. |
| 11 | #' \item 'X,Y' : input/output, mandatory if moments not given |
| 12 | #' \item 'exact': use exact formulas when available? |
| 13 | #' \item weights Weights on moments when minimizing sum of squares |
| 14 | #' } |
| 15 | #' |
| 16 | #' @return An object 'op' of class OptimParams, initialized so that \code{op$run(x0)} |
| 17 | #' outputs the list of optimized parameters |
| 18 | #' \itemize{ |
| 19 | #' \item p: proportions, size K |
| 20 | #' \item β: regression matrix, size dxK |
| 21 | #' \item b: intercepts, size K |
| 22 | #' } |
| 23 | #' x0 is a vector containing respectively the K-1 first elements of p, then β by |
| 24 | #' columns, and finally b: \code{x0 = c(p[1:(K-1)],as.double(β),b)}. |
| 25 | #' |
| 26 | #' @seealso \code{multiRun} to estimate statistics based on β, and |
| 27 | #' \code{generateSampleIO} for I/O random generation. |
| 28 | #' |
| 29 | #' @examples |
| 30 | #' # Optimize parameters from estimated μ |
| 31 | #' io = generateSampleIO(10000, 1/2, matrix(c(1,-2,3,1),ncol=2), c(0,0), "logit") |
| 32 | #' μ = computeMu(io$X, io$Y, list(K=2)) |
| 33 | #' M <- computeMoments(io$X, io$Y) |
| 34 | #' o <- optimParams(2, "logit", list(M=M)) |
| 35 | #' x0 <- c(1/2, as.double(μ), c(0,0)) |
| 36 | #' par0 <- o$run(x0) |
| 37 | #' # Compare with another starting point |
| 38 | #' x1 <- c(1/2, 2*as.double(μ), c(0,0)) |
| 39 | #' par1 <- o$run(x1) |
| 40 | #' o$f( o$linArgs(par0) ) |
| 41 | #' o$f( o$linArgs(par1) ) |
| 42 | #' @export |
| 43 | optimParams = function(K, link=c("logit","probit"), optargs=list()) |
| 44 | { |
| 45 | # Check arguments |
| 46 | link <- match.arg(link) |
| 47 | if (!is.list(optargs)) |
| 48 | stop("optargs: list") |
| 49 | if (!is.numeric(K) || K < 2) |
| 50 | stop("K: integer >= 2") |
| 51 | |
| 52 | M <- optargs$M |
| 53 | if (is.null(M)) |
| 54 | { |
| 55 | if (is.null(optargs$X) || is.null(optargs$Y)) |
| 56 | stop("If moments are not provided, X and Y are required") |
| 57 | M <- computeMoments(optargs$X,optargs$Y) |
| 58 | } |
| 59 | |
| 60 | weights <- optargs$weights |
| 61 | if (is.null(weights)) |
| 62 | weights <- rep(1, K) |
| 63 | |
| 64 | # Build and return optimization algorithm object |
| 65 | methods::new("OptimParams", "li"=link, "M1"=as.double(M[[1]]), |
| 66 | "M2"=as.double(M[[2]]), "M3"=as.double(M[[3]]), |
| 67 | "weights"=weights, "K"=as.integer(K)) |
| 68 | } |
| 69 | |
| 70 | # Encapsulated optimization for p (proportions), β and b (regression parameters) |
| 71 | # |
| 72 | # @field li Link, 'logit' or 'probit' |
| 73 | # @field M1 Estimated first-order moment |
| 74 | # @field M2 Estimated second-order moment (flattened) |
| 75 | # @field M3 Estimated third-order moment (flattened) |
| 76 | # @field weights Vector of moments' weights |
| 77 | # @field K Number of populations |
| 78 | # @field d Number of dimensions |
| 79 | # |
| 80 | setRefClass( |
| 81 | Class = "OptimParams", |
| 82 | |
| 83 | fields = list( |
| 84 | # Inputs |
| 85 | li = "character", #link 'logit' or 'probit' |
| 86 | M1 = "numeric", #order-1 moment (vector size d) |
| 87 | M2 = "numeric", #M2 easier to process as a vector |
| 88 | M3 = "numeric", #M3 easier to process as a vector |
| 89 | weights = "numeric", #weights on moments |
| 90 | # Dimensions |
| 91 | K = "integer", |
| 92 | d = "integer" |
| 93 | ), |
| 94 | |
| 95 | methods = list( |
| 96 | initialize = function(...) |
| 97 | { |
| 98 | "Check args and initialize K, d" |
| 99 | |
| 100 | callSuper(...) |
| 101 | if (!hasArg("li") || !hasArg("M1") || !hasArg("M2") || !hasArg("M3") |
| 102 | || !hasArg("K")) |
| 103 | { |
| 104 | stop("Missing arguments") |
| 105 | } |
| 106 | |
| 107 | d <<- length(M1) |
| 108 | }, |
| 109 | |
| 110 | expArgs = function(x) |
| 111 | { |
| 112 | "Expand individual arguments from vector x" |
| 113 | |
| 114 | list( |
| 115 | # p: dimension K-1, need to be completed |
| 116 | "p" = c(x[1:(K-1)], 1-sum(x[1:(K-1)])), |
| 117 | "β" = matrix(x[K:(K+d*K-1)], ncol=K), |
| 118 | "b" = x[(K+d*K):(K+(d+1)*K-1)]) |
| 119 | }, |
| 120 | |
| 121 | linArgs = function(o) |
| 122 | { |
| 123 | " Linearize vectors+matrices into a vector x" |
| 124 | |
| 125 | c(o$p[1:(K-1)], as.double(o$β), o$b) |
| 126 | }, |
| 127 | |
| 128 | f = function(x) |
| 129 | { |
| 130 | "Sum of squares (Mi - hat_Mi)^2 where Mi is obtained from formula" |
| 131 | |
| 132 | P <- expArgs(x) |
| 133 | p <- P$p |
| 134 | β <- P$β |
| 135 | λ <- sqrt(colSums(β^2)) |
| 136 | b <- P$b |
| 137 | |
| 138 | # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 |
| 139 | β2 <- apply(β, 2, function(col) col %o% col) |
| 140 | β3 <- apply(β, 2, function(col) col %o% col %o% col) |
| 141 | |
| 142 | return( |
| 143 | weights[1] * sum( ( β %*% (p * .G(li,1,λ,b)) - M1 )^2 ) + |
| 144 | weights[2] * sum( ( β2 %*% (p * .G(li,2,λ,b)) - M2 )^2 ) + |
| 145 | weights[3] * sum( ( β3 %*% (p * .G(li,3,λ,b)) - M3 )^2 ) ) |
| 146 | }, |
| 147 | |
| 148 | grad_f = function(x) |
| 149 | { |
| 150 | "Gradient of f, dimension (K-1) + d*K + K = (d+2)*K - 1" |
| 151 | |
| 152 | P <- expArgs(x) |
| 153 | p <- P$p |
| 154 | β <- P$β |
| 155 | λ <- sqrt(colSums(β^2)) |
| 156 | μ <- sweep(β, 2, λ, '/') |
| 157 | b <- P$b |
| 158 | |
| 159 | # Tensorial products β^2 = β2 and β^3 = β3 must be computed from current β1 |
| 160 | β2 <- apply(β, 2, function(col) col %o% col) |
| 161 | β3 <- apply(β, 2, function(col) col %o% col %o% col) |
| 162 | |
| 163 | # Some precomputations |
| 164 | G1 = .G(li,1,λ,b) |
| 165 | G2 = .G(li,2,λ,b) |
| 166 | G3 = .G(li,3,λ,b) |
| 167 | G4 = .G(li,4,λ,b) |
| 168 | G5 = .G(li,5,λ,b) |
| 169 | |
| 170 | # (Mi - hat_Mi)^2 ' == (Mi - hat_Mi)' 2(Mi - hat_Mi) = Mi' Fi |
| 171 | F1 = as.double( 2 * ( β %*% (p * G1) - M1 ) ) |
| 172 | F2 = as.double( 2 * ( β2 %*% (p * G2) - M2 ) ) |
| 173 | F3 = as.double( 2 * ( β3 %*% (p * G3) - M3 ) ) |
| 174 | |
| 175 | km1 = 1:(K-1) |
| 176 | grad <- #gradient on p |
| 177 | weights[1] * t( sweep(as.matrix(β [,km1]), 2, G1[km1], '*') - G1[K] * β [,K] ) %*% F1 + |
| 178 | weights[2] * t( sweep(as.matrix(β2[,km1]), 2, G2[km1], '*') - G2[K] * β2[,K] ) %*% F2 + |
| 179 | weights[3] * t( sweep(as.matrix(β3[,km1]), 2, G3[km1], '*') - G3[K] * β3[,K] ) %*% F3 |
| 180 | |
| 181 | grad_β <- matrix(nrow=d, ncol=K) |
| 182 | for (i in 1:d) |
| 183 | { |
| 184 | # i determines the derivated matrix dβ[2,3] |
| 185 | |
| 186 | dβ_left <- sweep(β, 2, p * G3 * β[i,], '*') |
| 187 | dβ_right <- matrix(0, nrow=d, ncol=K) |
| 188 | block <- i |
| 189 | dβ_right[block,] <- dβ_right[block,] + 1 |
| 190 | dβ <- dβ_left + sweep(dβ_right, 2, p * G1, '*') |
| 191 | |
| 192 | dβ2_left <- sweep(β2, 2, p * G4 * β[i,], '*') |
| 193 | dβ2_right <- do.call( rbind, lapply(1:d, function(j) { |
| 194 | sweep(dβ_right, 2, β[j,], '*') |
| 195 | }) ) |
| 196 | block <- ((i-1)*d+1):(i*d) |
| 197 | dβ2_right[block,] <- dβ2_right[block,] + β |
| 198 | dβ2 <- dβ2_left + sweep(dβ2_right, 2, p * G2, '*') |
| 199 | |
| 200 | dβ3_left <- sweep(β3, 2, p * G5 * β[i,], '*') |
| 201 | dβ3_right <- do.call( rbind, lapply(1:d, function(j) { |
| 202 | sweep(dβ2_right, 2, β[j,], '*') |
| 203 | }) ) |
| 204 | block <- ((i-1)*d*d+1):(i*d*d) |
| 205 | dβ3_right[block,] <- dβ3_right[block,] + β2 |
| 206 | dβ3 <- dβ3_left + sweep(dβ3_right, 2, p * G3, '*') |
| 207 | |
| 208 | grad_β[i,] <- |
| 209 | weights[1] * t(dβ) %*% F1 + |
| 210 | weights[2] * t(dβ2) %*% F2 + |
| 211 | weights[3] * t(dβ3) %*% F3 |
| 212 | } |
| 213 | grad <- c(grad, as.double(grad_β)) |
| 214 | |
| 215 | grad = c(grad, #gradient on b |
| 216 | weights[1] * t( sweep(β, 2, p * G2, '*') ) %*% F1 + |
| 217 | weights[2] * t( sweep(β2, 2, p * G3, '*') ) %*% F2 + |
| 218 | weights[3] * t( sweep(β3, 2, p * G4, '*') ) %*% F3 ) |
| 219 | |
| 220 | grad |
| 221 | }, |
| 222 | |
| 223 | run = function(x0) |
| 224 | { |
| 225 | "Run optimization from x0 with solver..." |
| 226 | |
| 227 | if (!is.list(x0)) |
| 228 | stop("x0: list") |
| 229 | if (is.null(x0$β)) |
| 230 | stop("At least x0$β must be provided") |
| 231 | if (!is.matrix(x0$β) || any(is.na(x0$β)) || ncol(x0$β) != K) |
| 232 | stop("x0$β: matrix, no NA, ncol == K") |
| 233 | if (is.null(x0$p)) |
| 234 | x0$p = rep(1/K, K-1) |
| 235 | else if (length(x0$p) != K-1 || sum(x0$p) > 1) |
| 236 | stop("x0$p should contain positive integers and sum to < 1") |
| 237 | # Next test = heuristic to detect missing b (when matrix is called "beta") |
| 238 | if (is.null(x0$b) || all(x0$b == x0$β)) |
| 239 | x0$b = rep(0, K) |
| 240 | else if (any(is.na(x0$b))) |
| 241 | stop("x0$b cannot have missing values") |
| 242 | |
| 243 | op_res = constrOptim( linArgs(x0), .self$f, .self$grad_f, |
| 244 | ui=cbind( |
| 245 | rbind( rep(-1,K-1), diag(K-1) ), |
| 246 | matrix(0, nrow=K, ncol=(d+1)*K) ), |
| 247 | ci=c(-1,rep(0,K-1)) ) |
| 248 | |
| 249 | expArgs(op_res$par) |
| 250 | } |
| 251 | ) |
| 252 | ) |
| 253 | |
| 254 | # Compute vectorial E[g^{(order)}(<β,x> + b)] with x~N(0,Id) (integral in R^d) |
| 255 | # = E[g^{(order)}(z)] with z~N(b,diag(λ)) |
| 256 | # |
| 257 | # @param link Link, 'logit' or 'probit' |
| 258 | # @param order Order of derivative |
| 259 | # @param λ Norm of columns of β |
| 260 | # @param b Intercept |
| 261 | # |
| 262 | .G <- function(link, order, λ, b) |
| 263 | { |
| 264 | # NOTE: weird "integral divergent" error on inputs: |
| 265 | # link="probit"; order=2; λ=c(531.8099,586.8893,523.5816); b=c(-118.512674,-3.488020,2.109969) |
| 266 | # Switch to pracma package for that (but it seems slow...) |
| 267 | |
| 268 | exactComp <- FALSE #TODO: global, or argument... |
| 269 | |
| 270 | if (exactComp && link == "probit") |
| 271 | { |
| 272 | # Use exact computations |
| 273 | sapply( seq_along(λ), function(k) { |
| 274 | .exactProbitIntegral(order, λ[k], b[k]) |
| 275 | }) |
| 276 | } |
| 277 | |
| 278 | else |
| 279 | { |
| 280 | # Numerical integration |
| 281 | sapply( seq_along(λ), function(k) { |
| 282 | res <- NULL |
| 283 | tryCatch({ |
| 284 | # Fast code, may fail: |
| 285 | res <- stats::integrate( |
| 286 | function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi), |
| 287 | lower=-Inf, upper=Inf )$value |
| 288 | }, error = function(e) { |
| 289 | # Robust slow code, no fails observed: |
| 290 | sink("/dev/null") #pracma package has some useless printed outputs... |
| 291 | res <- pracma::integral( |
| 292 | function(z) .deriv[[link]][[order]](λ[k]*z+b[k]) * exp(-z^2/2) / sqrt(2*pi), |
| 293 | xmin=-Inf, xmax=Inf, method="Kronrod") |
| 294 | sink() |
| 295 | }) |
| 296 | res |
| 297 | }) |
| 298 | } |
| 299 | } |
| 300 | |
| 301 | # TODO: check these computations (wrong atm) |
| 302 | .exactProbitIntegral <- function(order, λ, b) |
| 303 | { |
| 304 | c1 = (1/sqrt(2*pi)) * exp( -.5 * b/((λ^2+1)^2) ) |
| 305 | if (order == 1) |
| 306 | return (c1) |
| 307 | c2 = b - λ^2 / (λ^2+1) |
| 308 | if (order == 2) |
| 309 | return (c1 * c2) |
| 310 | if (order == 3) |
| 311 | return (c1 * (λ^2 - 1 + c2^2)) |
| 312 | if (order == 4) |
| 313 | return ( (c1*c2/((λ^2+1)^2)) * (-λ^4*((b+1)^2+1) - |
| 314 | 2*λ^3 + λ^2*(2-2*b*(b-1)) + 6*λ + 3 - b^2) ) |
| 315 | if (order == 5) #only remaining case... |
| 316 | return ( c1 * (3*λ^4+c2^4+6*c1^2*(λ^2-1) - 6*λ^2 + 6) ) |
| 317 | } |
| 318 | |
| 319 | # Derivatives list: g^(k)(x) for links 'logit' and 'probit' |
| 320 | # |
| 321 | .deriv <- list( |
| 322 | "probit"=list( |
| 323 | # 'probit' derivatives list; |
| 324 | # TODO: exact values for the integral E[g^(k)(λz+b)] |
| 325 | function(x) exp(-x^2/2)/(sqrt(2*pi)), #g' |
| 326 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * -x, #g'' |
| 327 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^2 - 1), #g^(3) |
| 328 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * (-x^3 + 3*x), #g^(4) |
| 329 | function(x) exp(-x^2/2)/(sqrt(2*pi)) * ( x^4 - 6*x^2 + 3) #g^(5) |
| 330 | ), |
| 331 | "logit"=list( |
| 332 | # Sigmoid derivatives list, obtained with http://www.derivative-calculator.net/ |
| 333 | # @seealso http://www.ece.uc.edu/~aminai/papers/minai_sigmoids_NN93.pdf |
| 334 | function(x) {e=exp(x); .zin(e /(e+1)^2)}, #g' |
| 335 | function(x) {e=exp(x); .zin(e*(-e + 1) /(e+1)^3)}, #g'' |
| 336 | function(x) {e=exp(x); .zin(e*( e^2 - 4*e + 1) /(e+1)^4)}, #g^(3) |
| 337 | function(x) {e=exp(x); .zin(e*(-e^3 + 11*e^2 - 11*e + 1) /(e+1)^5)}, #g^(4) |
| 338 | function(x) {e=exp(x); .zin(e*( e^4 - 26*e^3 + 66*e^2 - 26*e + 1)/(e+1)^6)} #g^(5) |
| 339 | ) |
| 340 | ) |
| 341 | |
| 342 | # Utility for integration: "[return] zero if [argument is] NaN" (Inf / Inf divs) |
| 343 | # |
| 344 | # @param x Ratio of polynoms of exponentials, as in .S[[i]] |
| 345 | # |
| 346 | .zin <- function(x) |
| 347 | { |
| 348 | x[is.nan(x)] <- 0. |
| 349 | x |
| 350 | } |