Commit | Line | Data |
---|---|---|
ef67d338 BA |
1 | EMGLLF = function(phiInit,rhoInit,piInit,gamInit,mini,maxi,gamma,lambda,X,Y,tau) |
2 | { | |
83ed2c0a BG |
3 | #matrix dimensions |
4 | n = dim(X)[1] | |
c2028869 BG |
5 | p = dim(phiInit)[1] |
6 | m = dim(phiInit)[2] | |
7 | k = dim(phiInit)[3] | |
83ed2c0a BG |
8 | |
9 | #init outputs | |
10 | phi = phiInit | |
11 | rho = rhoInit | |
ef67d338 | 12 | pi = piInit |
83ed2c0a BG |
13 | LLF = rep(0, maxi) |
14 | S = array(0, dim=c(p,m,k)) | |
15 | ||
83ed2c0a BG |
16 | gam = gamInit |
17 | Gram2 = array(0, dim=c(p,p,k)) | |
18 | ps2 = array(0, dim=c(p,m,k)) | |
19 | b = rep(0, k) | |
20 | pen = matrix(0, maxi, k) | |
21 | X2 = array(0, dim=c(n,p,k)) | |
6e22eb7b | 22 | Y2 = array(0, dim=c(n,m,k)) |
83ed2c0a BG |
23 | dist = 0 |
24 | dist2 = 0 | |
25 | ite = 1 | |
ef67d338 | 26 | pi2 = rep(0, k) |
83ed2c0a BG |
27 | ps = matrix(0, m,k) |
28 | nY2 = matrix(0, m,k) | |
29 | ps1 = array(0, dim=c(n,m,k)) | |
83ed2c0a BG |
30 | Gam = matrix(0, n,k) |
31 | EPS = 1E-15 | |
32 | ||
ef67d338 BA |
33 | while(ite <= mini || (ite<= maxi && (dist>= tau || dist2 >= sqrt(tau)))) |
34 | { | |
83ed2c0a BG |
35 | Phi = phi |
36 | Rho = rho | |
ef67d338 BA |
37 | Pi = pi |
38 | ||
83ed2c0a | 39 | #calcul associé à Y et X |
ef67d338 BA |
40 | for(r in 1:k) |
41 | { | |
42 | for (mm in 1:m) | |
43 | Y2[,mm,r] = sqrt(gam[,r]) * Y[,mm] | |
44 | for (i in 1:n) | |
45 | X2[i,,r] = sqrt(gam[i,r]) * X[i,] | |
46 | for (mm in 1:m) | |
83ed2c0a | 47 | ps2[,mm,r] = crossprod(X2[,,r],Y2[,mm,r]) |
ef67d338 BA |
48 | for (j in 1:p) |
49 | { | |
50 | for (s in 1:p) | |
6e22eb7b | 51 | Gram2[j,s,r] = crossprod(X2[,j,r], X2[,s,r]) |
83ed2c0a BG |
52 | } |
53 | } | |
54 | ||
55 | ########## | |
56 | #Etape M # | |
57 | ########## | |
58 | ||
59 | #pour pi | |
f227455a | 60 | for (r in 1:k){ |
61 | b[r] = sum(abs(phi[,,r]))} | |
87fea89a | 62 | gam2 = colSums(gam) |
ef67d338 | 63 | a = sum(gam %*% log(pi)) |
83ed2c0a BG |
64 | |
65 | #tant que les props sont negatives | |
66 | kk = 0 | |
67 | pi2AllPositive = FALSE | |
ef67d338 BA |
68 | while (!pi2AllPositive) |
69 | { | |
70 | pi2 = pi + 0.1^kk * ((1/n)*gam2 - pi) | |
71 | pi2AllPositive = all(pi2 >= 0) | |
83ed2c0a BG |
72 | kk = kk+1 |
73 | } | |
017063cd BA |
74 | |
75 | #if (ite==2) browser() | |
ef67d338 BA |
76 | #t[m] la plus grande valeur dans la grille O.1^k tel que ce soit décroissante ou constante |
77 | while( kk < 1000 && -a/n + lambda * sum(pi^gamma * b) < | |
78 | -sum(gam2 * log(pi2))/n + lambda * sum(pi2^gamma * b) ) | |
79 | { | |
80 | pi2 = pi + 0.1^kk * (1/n*gam2 - pi) | |
81 | kk = kk + 1 | |
83ed2c0a | 82 | } |
ef67d338 BA |
83 | t = 0.1^kk |
84 | pi = (pi + t*(pi2-pi)) / sum(pi + t*(pi2-pi)) | |
83ed2c0a BG |
85 | |
86 | #Pour phi et rho | |
ef67d338 BA |
87 | for (r in 1:k) |
88 | { | |
89 | for (mm in 1:m) | |
90 | { | |
91 | for (i in 1:n) | |
92 | { | |
93 | ps1[i,mm,r] = Y2[i,mm,r] * sum(X2[i,,r] * phi[,mm,r]) | |
83ed2c0a | 94 | } |
b45ba1b0 | 95 | ps[mm,r] = sum(ps1[,mm,r]) |
f227455a | 96 | nY2[mm,r] = sum(Y2[,mm,r]^2) |
ef67d338 | 97 | rho[mm,mm,r] = (ps[mm,r]+sqrt(ps[mm,r]^2+4*nY2[mm,r]*gam2[r])) / (2*nY2[mm,r]) |
83ed2c0a BG |
98 | } |
99 | } | |
ef67d338 BA |
100 | for (r in 1:k) |
101 | { | |
102 | for (j in 1:p) | |
103 | { | |
104 | for (mm in 1:m) | |
105 | { | |
f227455a | 106 | S[j,mm,r] = -rho[mm,mm,r]*ps2[j,mm,r] + sum(phi[-j,mm,r] * Gram2[j, setdiff(1:p, j),r]) |
107 | # (if(j>1) sum(phi[1:(j-1),mm,r] * Gram2[j,1:(j-1),r]) else 0) + | |
108 | # (if(j<p) sum(phi[(j+1):p,mm,r] * Gram2[j,(j+1):p,r]) else 0) | |
ef67d338 | 109 | if (abs(S[j,mm,r]) <= n*lambda*(pi[r]^gamma)) |
83ed2c0a | 110 | phi[j,mm,r]=0 |
ef67d338 BA |
111 | else if(S[j,mm,r] > n*lambda*(pi[r]^gamma)) |
112 | phi[j,mm,r] = (n*lambda*(pi[r]^gamma)-S[j,mm,r]) / Gram2[j,j,r] | |
113 | else | |
114 | phi[j,mm,r] = -(n*lambda*(pi[r]^gamma)+S[j,mm,r]) / Gram2[j,j,r] | |
83ed2c0a BG |
115 | } |
116 | } | |
117 | } | |
ef67d338 | 118 | |
83ed2c0a BG |
119 | ########## |
120 | #Etape E # | |
121 | ########## | |
122 | sumLogLLF2 = 0 | |
ef67d338 BA |
123 | for (i in 1:n) |
124 | { | |
125 | #precompute sq norms to numerically adjust their values | |
126 | sqNorm2 = rep(0,k) | |
f227455a | 127 | for (r in 1:k){ |
128 | sqNorm2[r] = sum( (Y[i,]%*%rho[,,r]-X[i,]%*%phi[,,r])^2 )} | |
ef67d338 | 129 | |
83ed2c0a BG |
130 | #compute Gam(:,:) using shift determined above |
131 | sumLLF1 = 0.0; | |
ef67d338 BA |
132 | for (r in 1:k) |
133 | { | |
134 | #FIXME: numerical problems, because 0 < det(Rho[,,r] < EPS; what to do ?! | |
135 | # consequence: error in while() at line 77 | |
f227455a | 136 | Gam[i,r] = pi[r] * exp(-0.5*sqNorm2[r])* det(rho[,,r]) |
ef67d338 | 137 | sumLLF1 = sumLLF1 + Gam[i,r] / (2*base::pi)^(m/2) |
83ed2c0a BG |
138 | } |
139 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
140 | sumGamI = sum(Gam[i,]) | |
141 | if(sumGamI > EPS) | |
142 | gam[i,] = Gam[i,] / sumGamI | |
143 | else | |
ef67d338 | 144 | gam[i,] = rep(0,k) |
83ed2c0a | 145 | } |
ef67d338 BA |
146 | |
147 | sumPen = sum(pi^gamma * b) | |
148 | LLF[ite] = -sumLogLLF2/n + lambda*sumPen | |
149 | ||
150 | dist = ifelse( ite == 1, LLF[ite], (LLF[ite]-LLF[ite-1]) / (1+abs(LLF[ite])) ) | |
151 | ||
152 | Dist1 = max( (abs(phi-Phi)) / (1+abs(phi)) ) | |
153 | Dist2 = max( (abs(rho-Rho)) / (1+abs(rho)) ) | |
154 | Dist3 = max( (abs(pi-Pi)) / (1+abs(Pi)) ) | |
155 | dist2 = max(Dist1,Dist2,Dist3) | |
156 | ||
157 | ite = ite+1 | |
83ed2c0a | 158 | } |
f227455a | 159 | |
160 | affec = apply(gam, 1,which.max) | |
161 | return(list("phi"=phi, "rho"=rho, "pi"=pi, "LLF"=LLF, "S"=S, "affec" = affec )) | |
87fea89a | 162 | } |