Commit | Line | Data |
---|---|---|
b7cd987d BA |
1 | #' CLAWS: CLustering with wAvelets and Wer distanceS |
2 | #' | |
3 | #' Cluster electricity power curves (or any series of similar nature) by applying a | |
4 | #' two stage procedure in parallel (see details). | |
5 | #' Input series must be sampled on the same time grid, no missing values. | |
6 | #' | |
7 | #' Summary of the function execution flow: | |
8 | #' \enumerate{ | |
9 | #' \item Compute and serialize all contributions, obtained through discrete wavelet | |
10 | #' decomposition (see Antoniadis & al. [2013]) | |
11 | #' \item Divide series into \code{ntasks} groups to process in parallel. In each task: | |
12 | #' \enumerate{ | |
13 | #' \item iterate the first clustering algorithm on its aggregated outputs, | |
14 | #' on inputs of size \code{nb_items_clust}\cr | |
15 | #' -> K1 medoids indices | |
16 | #' \item optionally, if WER=="mix":\cr | |
17 | #' a. compute WER distances (K1xK1) between medoids\cr | |
18 | #' b. apply the 2nd clustering algorithm\cr | |
19 | #' -> K2 medoids indices | |
20 | #' } | |
21 | #' \item Launch a final task on the aggregated outputs of all previous tasks: | |
22 | #' ntasks*K1 if WER=="end", ntasks*K2 otherwise | |
23 | #' \item Compute synchrones (sum of series within each final group) | |
24 | #' } | |
25 | #' | |
26 | #' The main argument -- \code{series} -- has a quite misleading name, since it can be | |
27 | #' either a [big.]matrix, a CSV file, a connection or a user function to retrieve series. | |
28 | #' When \code{series} is given as a function it must take a single argument, | |
29 | #' 'indices': integer vector equal to the indices of the curves to retrieve; | |
30 | #' see SQLite example. | |
31 | #' WARNING: the return value must be a matrix (in columns), or NULL if no matches. | |
32 | #' | |
33 | #' Note: Since we don't make assumptions on initial data, there is a possibility that | |
34 | #' even when serialized, contributions do not fit in RAM. For example, | |
35 | #' 30e6 series of length 100,000 would lead to a +4Go contribution matrix. Therefore, | |
36 | #' it's safer to place these in (binary) files; that's what we do. | |
37 | #' | |
38 | #' @param series Access to the N (time-)series, which can be of one of the four | |
39 | #' following types: | |
40 | #' \itemize{ | |
41 | #' \item [big.]matrix: each column contains the (time-ordered) values of one | |
42 | #' time-serie | |
43 | #' \item connection: any R connection object providing lines as described above | |
44 | #' \item character: name of a CSV file containing series in rows (no header) | |
45 | #' \item function: a custom way to retrieve the curves; it has only one argument: | |
46 | #' the indices of the series to be retrieved. See SQLite example | |
47 | #' } | |
48 | #' @param K1 Number of clusters to be found after stage 1 (K1 << N) | |
49 | #' @param K2 Number of clusters to be found after stage 2 (K2 << K1) | |
50 | #' @param nb_series_per_chunk Number of series to retrieve in one batch | |
51 | #' @param nb_items_clust Number of items in 1st clustering algorithm input | |
52 | #' @param algoClust1 Clustering algorithm for stage 1. A function which takes (data, K) | |
53 | #' as argument where data is a matrix in columns and K the desired number of clusters, | |
54 | #' and outputs K medoids ranks. Default: PAM. | |
55 | #' @param algoClust2 Clustering algorithm for stage 2. A function which takes (dists, K) | |
56 | #' as argument where dists is a matrix of distances and K the desired number of | |
57 | #' clusters, and outputs K medoids ranks. Default: PAM. | |
58 | #' @param wav_filt Wavelet transform filter, as a string "Family:FilterNumber"; see | |
59 | #' ?wavethresh::wd | |
60 | #' @param contrib_type Type of contribution: "relative", "logit" or "absolute" (any | |
61 | #' prefix) | |
62 | #' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply | |
63 | #' stage 2 at the end of each task | |
64 | #' @param smooth_lvl Smoothing level: odd integer, 1 == no smoothing. | |
65 | #' @param nvoice Number of voices within each octave for CWT computations | |
66 | #' @param random TRUE (default) for random chunks repartition | |
67 | #' @param ntasks Number of tasks (parallel iterations to obtain K1 [if WER=="end"] | |
68 | #' or K2 [if WER=="mix"] medoids); default: 1.\cr | |
69 | #' Note: ntasks << N (number of series), so that N is "roughly divisible" by ntasks | |
70 | #' @param ncores_tasks Number of parallel tasks ('1' == sequential tasks) | |
71 | #' @param ncores_clust Number of parallel clusterings in one task | |
72 | #' @param sep Separator in CSV input file (if any provided) | |
73 | #' @param nbytes 4 or 8 bytes to (de)serialize a floating-point number | |
74 | #' @param endian Endianness for (de)serialization: "little" or "big" | |
75 | #' @param verbose FALSE: nothing printed; TRUE: some execution traces | |
76 | #' | |
77 | #' @return A list: | |
78 | #' \itemize{ | |
79 | #' \item medoids: matrix of the final K2 medoids curves | |
80 | #' \item ranks: corresponding indices in the dataset | |
81 | #' \item synchrones: sum of series within each final group | |
82 | #' } | |
83 | #' | |
84 | #' @references Clustering functional data using Wavelets [2013]; | |
85 | #' A. Antoniadis, X. Brossat, J. Cugliari & J.-M. Poggi. | |
86 | #' Inter. J. of Wavelets, Multiresolution and Information Procesing, | |
87 | #' vol. 11, No 1, pp.1-30. doi:10.1142/S0219691313500033 | |
88 | #' | |
89 | #' @examples | |
90 | #' \dontrun{ | |
91 | #' # WER distances computations are too long for CRAN (for now) | |
92 | #' # Note: on this small example, sequential run is faster | |
93 | #' | |
94 | #' # Random series around cos(x,2x,3x)/sin(x,2x,3x) | |
95 | #' x <- seq(0,50,0.05) | |
96 | #' L <- length(x) #1001 | |
97 | #' ref_series <- matrix( c(cos(x),cos(2*x),cos(3*x),sin(x),sin(2*x),sin(3*x)), ncol=6 ) | |
98 | #' library(wmtsa) | |
99 | #' series <- do.call( cbind, lapply( 1:6, function(i) | |
100 | #' do.call(cbind, wmtsa::wavBootstrap(ref_series[,i], n.realization=40)) ) ) | |
101 | #' # Mix series so that all groups are evenly spread | |
102 | #' permut <- (0:239)%%6 * 40 + (0:239)%/%6 + 1 | |
103 | #' series = series[,permut] | |
104 | #' #dim(series) #c(240,1001) | |
105 | #' res_ascii <- claws(series, K1=30, K2=6, nb_series_per_chunk=500, | |
106 | #' nb_items_clust=100, random=FALSE, verbose=TRUE, ncores_clust=1) | |
107 | #' | |
108 | #' # Same example, from CSV file | |
109 | #' csv_file <- tempfile(pattern="epclust_series.csv_") | |
110 | #' write.table(t(series), csv_file, sep=",", row.names=FALSE, col.names=FALSE) | |
111 | #' res_csv <- claws(csv_file, 30, 6, 500, 100, random=FALSE, ncores_clust=1) | |
112 | #' | |
113 | #' # Same example, from binary file | |
114 | #' bin_file <- tempfile(pattern="epclust_series.bin_") | |
115 | #' nbytes <- 8 | |
116 | #' endian <- "little" | |
117 | #' binarize(csv_file, bin_file, 500, ",", nbytes, endian) | |
118 | #' getSeries <- function(indices) getDataInFile(indices, bin_file, nbytes, endian) | |
119 | #' res_bin <- claws(getSeries, 30, 6, 500, 100, random=FALSE, ncores_clust=1) | |
120 | #' unlink(csv_file) | |
121 | #' unlink(bin_file) | |
122 | #' | |
123 | #' # Same example, from SQLite database | |
124 | #' library(DBI) | |
125 | #' series_db <- dbConnect(RSQLite::SQLite(), "file::memory:") | |
126 | #' # Prepare data.frame in DB-format | |
127 | #' n <- ncol(series) | |
128 | #' times_values <- data.frame( | |
129 | #' id = rep(1:n,each=L), | |
130 | #' time = rep( as.POSIXct(1800*(1:L),"GMT",origin="2001-01-01"), n ), | |
131 | #' value = as.double(series) ) | |
132 | #' dbWriteTable(series_db, "times_values", times_values) | |
133 | #' # Fill associative array, map index to identifier | |
134 | #' indexToID_inDB <- as.character( | |
135 | #' dbGetQuery(series_db, 'SELECT DISTINCT id FROM times_values')[,"id"] ) | |
136 | #' serie_length <- as.integer( dbGetQuery(series_db, | |
137 | #' paste("SELECT COUNT(*) FROM times_values WHERE id == ",indexToID_inDB[1],sep="")) ) | |
138 | #' getSeries <- function(indices) { | |
139 | #' indices = indices[ indices <= length(indexToID_inDB) ] | |
140 | #' if (length(indices) == 0) | |
141 | #' return (NULL) | |
142 | #' request <- "SELECT id,value FROM times_values WHERE id in (" | |
143 | #' for (i in seq_along(indices)) { | |
144 | #' request <- paste(request, indexToID_inDB[ indices[i] ], sep="") | |
145 | #' if (i < length(indices)) | |
146 | #' request <- paste(request, ",", sep="") | |
147 | #' } | |
148 | #' request <- paste(request, ")", sep="") | |
149 | #' df_series <- dbGetQuery(series_db, request) | |
150 | #' matrix(df_series[,"value"], nrow=serie_length) | |
151 | #' } | |
152 | #' res_db <- claws(getSeries, 30, 6, 500, 100, random=FALSE, ncores_clust=1) | |
153 | #' dbDisconnect(series_db) | |
154 | #' | |
155 | #' # All results should be equal: | |
156 | #' all(res_ascii$ranks == res_csv$ranks | |
157 | #' & res_ascii$ranks == res_bin$ranks | |
158 | #' & res_ascii$ranks == res_db$ranks) | |
159 | #' } | |
160 | #' @export | |
161 | claws <- function(series, K1, K2, nb_series_per_chunk, nb_items_clust=5*K1, | |
162 | algoClust1=function(data,K) cluster::pam(t(data),K,diss=FALSE,pamonce=1)$id.med, | |
163 | algoClust2=function(dists,K) cluster::pam(dists,K,diss=TRUE,pamonce=1)$id.med, | |
164 | wav_filt="Coiflets:1", contrib_type="absolute", WER="end", smooth_lvl=3, nvoice=4, | |
165 | random=TRUE, ntasks=1, ncores_tasks=1, ncores_clust=3, sep=",", nbytes=4, | |
166 | endian=.Platform$endian, verbose=FALSE) | |
167 | { | |
168 | # Check/transform arguments | |
169 | if (!is.matrix(series) && !bigmemory::is.big.matrix(series) | |
170 | && !is.function(series) | |
171 | && !methods::is(series,"connection") && !is.character(series)) | |
172 | { | |
173 | stop("'series': [big]matrix, function, file or valid connection (no NA)") | |
174 | } | |
175 | K1 <- .toInteger(K1, function(x) x>=2) | |
176 | K2 <- .toInteger(K2, function(x) x>=2) | |
177 | nb_series_per_chunk <- .toInteger(nb_series_per_chunk, function(x) x>=1) | |
178 | nb_items_clust <- .toInteger(nb_items_clust, function(x) x>K1) | |
179 | random <- .toLogical(random) | |
180 | wav_filt <- strsplit(wav_filt, ':')[[1]] | |
181 | wav_family <- wav_filt[1] | |
182 | wav_number <- wav_filt[2] | |
183 | tryCatch({ignored <- wavethresh::filter.select(wav_number, wav_family)}, | |
184 | error=function(e) stop("Invalid wavelet filter; see ?wavethresh::filter.select") ) | |
185 | ctypes <- c("relative","absolute","logit") | |
186 | contrib_type <- ctypes[ pmatch(contrib_type,ctypes) ] | |
187 | if (is.na(contrib_type)) | |
188 | stop("'contrib_type' in {'relative','absolute','logit'}") | |
189 | if (WER!="end" && WER!="mix") | |
190 | stop("'WER': in {'end','mix'}") | |
191 | random <- .toLogical(random) | |
192 | ntasks <- .toInteger(ntasks, function(x) x>=1) | |
193 | ncores_tasks <- .toInteger(ncores_tasks, function(x) x>=1) | |
194 | ncores_clust <- .toInteger(ncores_clust, function(x) x>=1) | |
195 | if (!is.character(sep)) | |
196 | stop("'sep': character") | |
197 | nbytes <- .toInteger(nbytes, function(x) x==4 || x==8) | |
198 | verbose <- .toLogical(verbose) | |
199 | ||
200 | # Binarize series if it is not a function; the aim is to always use a function, | |
201 | # to uniformize treatments. An equally good alternative would be to use a file-backed | |
202 | # bigmemory::big.matrix, but it would break the "all-is-function" pattern. | |
203 | if (!is.function(series)) | |
204 | { | |
205 | if (verbose) | |
206 | cat("...Serialize time-series (or retrieve past binary file)\n") | |
207 | series_file <- ".series.epclust.bin" | |
208 | if (!file.exists(series_file)) | |
209 | binarize(series, series_file, nb_series_per_chunk, sep, nbytes, endian) | |
210 | getSeries <- function(inds) getDataInFile(inds, series_file, nbytes, endian) | |
211 | } | |
212 | else | |
213 | getSeries <- series | |
214 | ||
215 | # Serialize all computed wavelets contributions into a file | |
216 | contribs_file <- ".contribs.epclust.bin" | |
217 | if (verbose) | |
218 | cat("...Compute contributions and serialize them (or retrieve past binary file)\n") | |
219 | if (!file.exists(contribs_file)) | |
220 | { | |
221 | nb_curves <- binarizeTransform(getSeries, | |
222 | function(curves) curvesToContribs(curves, wav_filt, contrib_type), | |
223 | contribs_file, nb_series_per_chunk, nbytes, endian) | |
224 | } | |
225 | else | |
226 | { | |
227 | # TODO: duplicate from getDataInFile() in de_serialize.R | |
228 | contribs_size <- file.info(contribs_file)$size #number of bytes in the file | |
229 | contrib_length <- readBin(contribs_file, "integer", n=1, size=8, endian=endian) | |
230 | nb_curves <- (contribs_size-8) / (nbytes*contrib_length) | |
231 | } | |
232 | getContribs <- function(indices) getDataInFile(indices, contribs_file, nbytes, endian) | |
233 | ||
234 | # A few sanity checks: do not continue if too few data available. | |
235 | if (nb_curves < K2) | |
236 | stop("Not enough data: less series than final number of clusters") | |
237 | nb_series_per_task <- round(nb_curves / ntasks) | |
238 | if (nb_series_per_task < K2) | |
239 | stop("Too many tasks: less series in one task than final number of clusters") | |
240 | ||
241 | # Generate a random permutation of 1:N (if random==TRUE); | |
242 | # otherwise just use arrival (storage) order. | |
243 | indices_all <- if (random) sample(nb_curves) else seq_len(nb_curves) | |
244 | # Split (all) indices into ntasks groups of ~same size | |
245 | indices_tasks <- lapply(seq_len(ntasks), function(i) { | |
246 | upper_bound <- ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves ) | |
247 | indices_all[((i-1)*nb_series_per_task+1):upper_bound] | |
248 | }) | |
249 | ||
250 | parll <- (ncores_tasks > 1) | |
251 | if (parll && ntasks>1) | |
252 | { | |
253 | # Initialize parallel runs: outfile="" allow to output verbose traces in the console | |
254 | # under Linux. All necessary variables are passed to the workers. | |
255 | cl <- | |
256 | if (verbose) | |
257 | parallel::makeCluster(ncores_tasks, outfile="") | |
258 | else | |
259 | parallel::makeCluster(ncores_tasks) | |
260 | varlist <- c("ncores_clust","verbose", #task 1 & 2 | |
261 | "K1","getContribs","algoClust1","nb_items_clust") #task 1 | |
262 | if (WER=="mix") | |
263 | { | |
264 | # Add variables for task 2 | |
265 | varlist <- c(varlist, "K2","getSeries","algoClust2","nb_series_per_chunk", | |
266 | "smooth_lvl","nvoice","nbytes","endian") | |
267 | } | |
268 | parallel::clusterExport(cl, varlist, envir <- environment()) | |
269 | } | |
270 | ||
271 | # This function achieves one complete clustering task, divided in stage 1 + stage 2. | |
272 | # stage 1: n indices --> clusteringTask1(...) --> K1 medoids (indices) | |
273 | # stage 2: K1 indices --> K1xK1 WER distances --> clusteringTask2(...) --> K2 medoids, | |
274 | # where n == N / ntasks, N being the total number of curves. | |
275 | runTwoStepClustering <- function(inds) | |
276 | { | |
277 | # When running in parallel, the environment is blank: we need to load the required | |
278 | # packages, and pass useful variables. | |
279 | if (parll && ntasks>1) | |
280 | require("epclust", quietly=TRUE) | |
281 | indices_medoids <- clusteringTask1(inds, getContribs, K1, algoClust1, | |
282 | nb_items_clust, ncores_clust, verbose) | |
283 | if (WER=="mix") | |
284 | { | |
285 | indices_medoids <- clusteringTask2(indices_medoids, getSeries, K2, algoClust2, | |
286 | nb_series_per_chunk,smooth_lvl,nvoice,nbytes,endian,ncores_clust,verbose) | |
287 | } | |
288 | indices_medoids | |
289 | } | |
290 | ||
291 | if (verbose) | |
292 | { | |
293 | message <- paste("...Run ",ntasks," x stage 1", sep="") | |
294 | if (WER=="mix") | |
295 | message <- paste(message," + stage 2", sep="") | |
296 | cat(paste(message,"\n", sep="")) | |
297 | } | |
298 | ||
299 | # As explained above, we obtain after all runs ntasks*[K1 or K2] medoids indices, | |
300 | # depending whether WER=="end" or "mix", respectively. | |
301 | indices_medoids_all <- | |
302 | if (parll && ntasks>1) | |
303 | unlist( parallel::parLapply(cl, indices_tasks, runTwoStepClustering) ) | |
304 | else | |
305 | unlist( lapply(indices_tasks, runTwoStepClustering) ) | |
306 | ||
307 | if (parll && ntasks>1) | |
308 | parallel::stopCluster(cl) | |
309 | ||
310 | # For the last stage, ncores_tasks*(ncores_clusts+1) cores should be available: | |
311 | # - ntasks for level 1 parallelism | |
312 | # - ntasks*ncores_clust for level 2 parallelism, | |
313 | # but since an extension MPI <--> tasks / OpenMP <--> sub-tasks is on the way, | |
314 | # it's better to just re-use ncores_clust | |
315 | ncores_last_stage <- ncores_clust | |
316 | ||
317 | # Run last clustering tasks to obtain only K2 medoids indices | |
318 | if (verbose) | |
319 | cat("...Run final // stage 1 + stage 2\n") | |
320 | indices_medoids <- clusteringTask1(indices_medoids_all, getContribs, K1, algoClust1, | |
321 | nb_items_clust, ncores_tasks*ncores_clust, verbose) | |
322 | ||
323 | indices_medoids <- clusteringTask2(indices_medoids, getSeries, K2, algoClust2, | |
324 | nb_series_per_chunk,smooth_lvl,nvoice,nbytes,endian,ncores_last_stage,verbose) | |
325 | ||
326 | # Compute synchrones, that is to say the cumulated power consumptions for each of the | |
327 | # K2 final groups. | |
328 | medoids <- getSeries(indices_medoids) | |
329 | synchrones <- computeSynchrones(medoids, getSeries, nb_curves, nb_series_per_chunk, | |
330 | ncores_last_stage, verbose) | |
331 | ||
332 | # NOTE: no need to use big.matrix here, because only K2 << K1 << N remaining curves | |
333 | list("medoids"=medoids, "ranks"=indices_medoids, "synchrones"=synchrones) | |
334 | } |