Commit | Line | Data |
---|---|---|
4fed76cc BA |
1 | #' EMGrank |
2 | #' | |
3 | #' Description de EMGrank | |
4 | #' | |
c280fe59 BA |
5 | #' @param phiInit ... |
6 | #' @param Pi Parametre de proportion | |
7 | #' @param Rho Parametre initial de variance renormalisé | |
8 | #' @param mini Nombre minimal d'itérations dans l'algorithme EM | |
9 | #' @param maxi Nombre maximal d'itérations dans l'algorithme EM | |
10 | #' @param X Régresseurs | |
11 | #' @param Y Réponse | |
12 | #' @param tau Seuil pour accepter la convergence | |
13 | #' @param rank Vecteur des rangs possibles | |
4fed76cc | 14 | #' |
c280fe59 BA |
15 | #' @return A list ... |
16 | #' phi : parametre de moyenne renormalisé, calculé par l'EM | |
17 | #' LLF : log vraisemblance associé à cet échantillon, pour les valeurs estimées des paramètres | |
4fed76cc | 18 | #' |
4fed76cc | 19 | #' @export |
aa480ac1 | 20 | EMGrank <- function(Pi, Rho, mini, maxi, X, Y, tau, rank, fast=TRUE) |
4fed76cc | 21 | { |
aa480ac1 BA |
22 | if (!fast) |
23 | { | |
24 | # Function in R | |
a3105972 | 25 | return (.EMGrank_R(Pi, Rho, mini, maxi, X, Y, tau, rank)) |
aa480ac1 | 26 | } |
567a7c38 | 27 | |
aa480ac1 | 28 | # Function in C |
c280fe59 BA |
29 | n = nrow(X) #nombre d'echantillons |
30 | p = ncol(X) #nombre de covariables | |
31 | m = ncol(Y) #taille de Y (multivarié) | |
32 | k = length(Pi) #nombre de composantes dans le mélange | |
33 | .Call("EMGrank", | |
34 | Pi, Rho, mini, maxi, X, Y, tau, rank, | |
35 | phi=double(p*m*k), LLF=double(1), | |
36 | n, p, m, k, | |
37 | PACKAGE="valse") | |
4fed76cc | 38 | } |
aa480ac1 BA |
39 | |
40 | #helper to always have matrices as arg (TODO: put this elsewhere? improve?) | |
41 | # --> Yes, we should use by-columns storage everywhere... [later!] | |
42 | matricize <- function(X) | |
43 | { | |
44 | if (!is.matrix(X)) | |
45 | return (t(as.matrix(X))) | |
46 | return (X) | |
47 | } | |
48 | ||
49 | # R version - slow but easy to read | |
a3105972 | 50 | .EMGrank_R = function(Pi, Rho, mini, maxi, X, Y, tau, rank) |
aa480ac1 BA |
51 | { |
52 | #matrix dimensions | |
53 | n = dim(X)[1] | |
54 | p = dim(X)[2] | |
55 | m = dim(Rho)[2] | |
56 | k = dim(Rho)[3] | |
57 | ||
58 | #init outputs | |
59 | phi = array(0, dim=c(p,m,k)) | |
60 | Z = rep(1, n) | |
61 | LLF = 0 | |
62 | ||
63 | #local variables | |
64 | Phi = array(0, dim=c(p,m,k)) | |
65 | deltaPhi = c() | |
66 | sumDeltaPhi = 0. | |
67 | deltaPhiBufferSize = 20 | |
68 | ||
69 | #main loop | |
70 | ite = 1 | |
71 | while (ite<=mini || (ite<=maxi && sumDeltaPhi>tau)) | |
72 | { | |
73 | #M step: Mise à jour de Beta (et donc phi) | |
74 | for(r in 1:k) | |
75 | { | |
76 | Z_indice = seq_len(n)[Z==r] #indices où Z == r | |
77 | if (length(Z_indice) == 0) | |
78 | next | |
79 | #U,S,V = SVD of (t(Xr)Xr)^{-1} * t(Xr) * Yr | |
80 | s = svd( ginv(crossprod(matricize(X[Z_indice,]))) %*% | |
81 | crossprod(matricize(X[Z_indice,]),matricize(Y[Z_indice,])) ) | |
82 | S = s$d | |
83 | #Set m-rank(r) singular values to zero, and recompose | |
84 | #best rank(r) approximation of the initial product | |
85 | if(rank[r] < length(S)) | |
86 | S[(rank[r]+1):length(S)] = 0 | |
87 | phi[,,r] = s$u %*% diag(S) %*% t(s$v) %*% Rho[,,r] | |
88 | } | |
89 | ||
90 | #Etape E et calcul de LLF | |
91 | sumLogLLF2 = 0 | |
92 | for(i in seq_len(n)) | |
93 | { | |
94 | sumLLF1 = 0 | |
95 | maxLogGamIR = -Inf | |
96 | for (r in seq_len(k)) | |
97 | { | |
98 | dotProduct = tcrossprod(Y[i,]%*%Rho[,,r]-X[i,]%*%phi[,,r]) | |
99 | logGamIR = log(Pi[r]) + log(det(Rho[,,r])) - 0.5*dotProduct | |
100 | #Z[i] = index of max (gam[i,]) | |
101 | if(logGamIR > maxLogGamIR) | |
102 | { | |
103 | Z[i] = r | |
104 | maxLogGamIR = logGamIR | |
105 | } | |
106 | sumLLF1 = sumLLF1 + exp(logGamIR) / (2*pi)^(m/2) | |
107 | } | |
108 | sumLogLLF2 = sumLogLLF2 + log(sumLLF1) | |
109 | } | |
110 | ||
111 | LLF = -1/n * sumLogLLF2 | |
112 | ||
113 | #update distance parameter to check algorithm convergence (delta(phi, Phi)) | |
114 | deltaPhi = c( deltaPhi, max( (abs(phi-Phi)) / (1+abs(phi)) ) ) #TODO: explain? | |
115 | if (length(deltaPhi) > deltaPhiBufferSize) | |
116 | deltaPhi = deltaPhi[2:length(deltaPhi)] | |
117 | sumDeltaPhi = sum(abs(deltaPhi)) | |
118 | ||
119 | #update other local variables | |
120 | Phi = phi | |
121 | ite = ite+1 | |
122 | } | |
123 | return(list("phi"=phi, "LLF"=LLF)) | |
124 | } |