#' @param k number of components
#' @param X matrix of covariates (of size n*p)
#' @param Y matrix of responses (of size n*m)
#' @param k number of components
#' @param X matrix of covariates (of size n*p)
#' @param Y matrix of responses (of size n*m)
#'
#' @return a list with phiInit, rhoInit, piInit, gamInit
#' @export
#'
#' @return a list with phiInit, rhoInit, piInit, gamInit
#' @export
-initSmallEM = function(k,X,Y,tau)
+#' @importFrom methods new
+#' @importFrom stats cutree dist hclust runif
+initSmallEM = function(k,X,Y)
+ if (length(Z_indice) == 1) {
+ betaInit1[,,r,repet] = ginv(crossprod(t(X[Z_indice,]))) %*%
+ crossprod(t(X[Z_indice,]), Y[Z_indice,])
+ } else {
betaInit1[,,r,repet] = ginv(crossprod(X[Z_indice,])) %*%
crossprod(X[Z_indice,], Y[Z_indice,])
betaInit1[,,r,repet] = ginv(crossprod(X[Z_indice,])) %*%
crossprod(X[Z_indice,], Y[Z_indice,])
sigmaInit1[,,r,repet] = diag(m)
phiInit1[,,r,repet] = betaInit1[,,r,repet] #/ sigmaInit1[,,r,repet]
rhoInit1[,,r,repet] = solve(sigmaInit1[,,r,repet])
sigmaInit1[,,r,repet] = diag(m)
phiInit1[,,r,repet] = betaInit1[,,r,repet] #/ sigmaInit1[,,r,repet]
rhoInit1[,,r,repet] = solve(sigmaInit1[,,r,repet])
maxiInit = 11
new_EMG = .Call("EMGLLF_core",phiInit1[,,,repet],rhoInit1[,,,repet],piInit1[repet,],
maxiInit = 11
new_EMG = .Call("EMGLLF_core",phiInit1[,,,repet],rhoInit1[,,,repet],piInit1[repet,],
- gamInit1[,,repet],miniInit,maxiInit,1,0,X,Y,tau)
+ gamInit1[,,repet],miniInit,maxiInit,1,0,X,Y,1e-4)