X-Git-Url: https://git.auder.net/images/diag_mark.svg?a=blobdiff_plain;f=pkg%2FR%2FgetData.R;h=a4e1e17b2e1808568dc5b0dd88cbaf5f86abbb26;hb=63ff1ecbd80adfe347faa0d954f526d15f033c22;hp=df94895af633b137f29c6fc1462a6724d178f97e;hpb=25b75559e2d9bf84e2de35b851d93fefdae36e17;p=talweg.git diff --git a/pkg/R/getData.R b/pkg/R/getData.R deleted file mode 100644 index df94895..0000000 --- a/pkg/R/getData.R +++ /dev/null @@ -1,110 +0,0 @@ -#' @title Acquire data in a clean format -#' -#' @description Take in input data frames and/or files containing raw data, and timezones, and -#' output a Data object, roughly corresponding to a list where each cell contains all value -#' for one day (see \code{?Data}). -#' -#' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time, -#' second is value) or a CSV file -#' @param exo_data Exogenous variables, as a data frame or a CSV file; first comlumn is dates, -#' next block are measurements for the day, and final block are exogenous forecasts -#' @param input_tz Timezone in the input files ("GMT" or e.g. "Europe/Paris") -#' @param date_format How date/time are stored (e.g. year/month/day hour:minutes; -#' see \code{strptime}) -#' @param working_tz Timezone to work with ("GMT" or e.g. "Europe/Paris") -#' @param predict_at When does the prediction take place ? Integer, in hours. Default: 0 -#' @param limit Number of days to extract (default: Inf, for "all") -#' -#' @return A list where data[[i]] contains -#' \itemize{ -#' \item time: vector of times -#' \item centered_serie: centered serie -#' \item level: corresponding level -#' \item exo: exogenous variables -#' \item exo_hat: predicted exogenous variables -#' } -#' -#' @examples -#' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg")) -#' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg")) -#' data = getData(ts_data, exo_data, limit=120) -#' @export -getData = function(ts_data, exo_data, input_tz="GMT", date_format="%d/%m/%Y %H:%M", - working_tz="GMT", predict_at=0, limit=Inf) -{ - # Sanity checks (not full, but sufficient at this stage) - if (!is.character(input_tz) || !is.character(working_tz)) - stop("Bad timezone (see ?timezone)") - input_tz = input_tz[1] - working_tz = working_tz[1] - if ( (!is.data.frame(ts_data) && !is.character(ts_data)) || - (!is.data.frame(exo_data) && !is.character(exo_data)) ) - stop("Bad time-series / exogenous input (data frame or CSV file)") - if (is.character(ts_data)) - ts_data = ts_data[1] - if (is.character(exo_data)) - exo_data = exo_data[1] - predict_at = as.integer(predict_at)[1] - if (predict_at<0 || predict_at>23) - stop("Bad predict_at (0-23)") - if (!is.character(date_format)) - stop("Bad date_format (character)") - date_format = date_format[1] - - ts_df = - if (is.character(ts_data)) - read.csv(ts_data) - else - ts_data - exo_df = - if (is.character(exo_data)) - read.csv(exo_data) - else - exo_data - # Convert to the desired timezone (usually "GMT" or "Europe/Paris") - formatted_dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz=input_tz) - ts_df[,1] = format(as.POSIXct(formatted_dates_POSIXlt), tz=working_tz, usetz=TRUE) - - line = 1 #index in PM10 file (24 lines for 1 cell) - nb_lines = nrow(ts_df) - nb_exos = ( ncol(exo_df) - 1 ) / 2 - data = list() - i = 1 #index of a cell in data - while (line <= nb_lines) - { - time = c() - serie = c() - repeat - { - { - time = c(time, ts_df[line,1]) - serie = c(serie, ts_df[line,2]) - line = line + 1 - }; - if (line >= nb_lines + 1 || as.POSIXlt(ts_df[line-1,1])$hour == predict_at) - break - } - - exo = as.data.frame( exo_df[i,2:(1+nb_exos)] ) - exo_hat = as.data.frame( exo_df[i,(1+nb_exos+1):(1+2*nb_exos)] ) - level = mean(serie, na.rm=TRUE) - centered_serie = serie - level - data[[i]] = list("time"=time, "centered_serie"=centered_serie, "level"=level, - "exo"=exo, "exo_hat"=exo_hat) - if (i >= limit) - break - i = i + 1 - } - start = 1 - end = length(data) - if (length(data[[1]]$centered_serie) < length(data[[2]]$centered_serie)) - start = 2 - if (length(data[[length(data)]]$centered_serie) < - length(data[[length(data)-1]]$centered_serie)) - { - end = end-1 - } - if (start>1 || end