| 1 | # extractParam |
| 2 | # |
| 3 | # Extract successive values of a projection of the parameter(s) |
| 4 | # |
| 5 | # @inheritParams plotHist |
| 6 | # |
| 7 | extractParam <- function(mr, x=1, y=1) |
| 8 | { |
| 9 | # Obtain L vectors where L = number of res lists in mr |
| 10 | lapply( mr, function(mr_list) { |
| 11 | sapply(mr_list, function(m) m[x,y]) |
| 12 | } ) |
| 13 | } |
| 14 | |
| 15 | #' plotHist |
| 16 | #' |
| 17 | #' Plot histogram |
| 18 | #' |
| 19 | #' @param mr Output of multiRun(), list of lists of functions results |
| 20 | #' @param x Row index of the element inside the aggregated parameter |
| 21 | #' @param y Colomn index of the element inside the aggregated parameter |
| 22 | #' |
| 23 | #' @examples |
| 24 | #' \dontrun{ |
| 25 | #' β <- matrix(c(1,-2,3,1),ncol=2) |
| 26 | #' mr <- multiRun(...) #see bootstrap example in ?multiRun : return lists of mu_hat |
| 27 | #' μ <- normalize(β) |
| 28 | #' for (i in 1:2) |
| 29 | #' mr[[i]] <- alignMatrices(res[[i]], ref=μ, ls_mode="exact") |
| 30 | #' plotHist(mr, 2, 1) #second row, first column} |
| 31 | #' @export |
| 32 | plotHist <- function(mr, x, y) |
| 33 | { |
| 34 | params <- extractParam(mr, x, y) |
| 35 | L = length(params) |
| 36 | # Plot histograms side by side |
| 37 | par(mfrow=c(1,L), cex.axis=1.5, cex.lab=1.5, mar=c(4.7,5,1,1)) |
| 38 | for (i in 1:L) |
| 39 | hist(params[[i]], breaks=40, freq=FALSE, xlab="Parameter value", ylab="Density") |
| 40 | } |
| 41 | |
| 42 | #' plotBox |
| 43 | #' |
| 44 | #' Draw boxplot |
| 45 | #' |
| 46 | #' @inheritParams plotHist |
| 47 | #' |
| 48 | #' @examples |
| 49 | #' #See example in ?plotHist |
| 50 | #' @export |
| 51 | plotBox <- function(mr, x, y) |
| 52 | { |
| 53 | params <- extractParam(mr, x, y) |
| 54 | L = length(params) |
| 55 | # Plot boxplots side by side |
| 56 | par(mfrow=c(1,L), cex.axis=1.5, cex.lab=1.5, mar=c(4.7,5,1,1)) |
| 57 | for (i in 1:L) |
| 58 | boxplot(params[[i]], ylab="Parameter value") |
| 59 | } |
| 60 | |
| 61 | #' plotCoefs |
| 62 | #' |
| 63 | #' Draw coefs estimations + standard deviations |
| 64 | #' |
| 65 | #' @inheritParams plotHist |
| 66 | #' @param params True value of parameters matrix |
| 67 | #' |
| 68 | #' @examples |
| 69 | #' #See example in ?plotHist |
| 70 | #' @export |
| 71 | plotCoefs <- function(mr, params) |
| 72 | { |
| 73 | nf <- length(mr) |
| 74 | L <- nrow(mr[[1]][[1]]) |
| 75 | K <- ncol(mr[[1]][[1]]) |
| 76 | |
| 77 | params_hat <- vector("list", nf) |
| 78 | stdev <- vector("list", nf) |
| 79 | for (i in 1:nf) |
| 80 | { |
| 81 | params_hat[[i]] <- matrix(nrow=L, ncol=K) |
| 82 | stdev[[i]] <- matrix(nrow=L, ncol=K) |
| 83 | } |
| 84 | for (x in 1:L) |
| 85 | { |
| 86 | for (y in 1:K) |
| 87 | { |
| 88 | estims <- extractParam(mr, x, y) |
| 89 | for (i in 1:nf) |
| 90 | { |
| 91 | params_hat[[i]][x,y] <- mean(estims[[i]]) |
| 92 | # stdev[[i]][x,y] <- sqrt( mean( (estims[[i]] - params[x,y])^2 ) ) |
| 93 | # HACK remove extreme quantile in estims[[i]] before computing sd() |
| 94 | stdev[[i]][x,y] <- sd( estims[[i]] [ estims[[i]] < max(estims[[i]]) & estims[[i]] > min(estims[[i]]) ] ) |
| 95 | } |
| 96 | } |
| 97 | } |
| 98 | |
| 99 | par(mfrow=c(1,nf), cex.axis=1.5, cex.lab=1.5, mar=c(4.7,5,1,1)) |
| 100 | params <- as.double(params) |
| 101 | o <- order(params) |
| 102 | for (i in 1:nf) |
| 103 | { |
| 104 | avg_param <- as.double(params_hat[[i]]) |
| 105 | std_param <- as.double(stdev[[i]]) |
| 106 | matplot(cbind(params[o],avg_param[o],avg_param[o]+std_param[o],avg_param[o]-std_param[o]), |
| 107 | col=c(2,1,1,1), lty=c(1,1,2,2), type="l", lwd=2, xlab="param", ylab="value") |
| 108 | } |
| 109 | |
| 110 | #print(o) #not returning o to avoid weird Jupyter issue... (TODO:) |
| 111 | } |
| 112 | |
| 113 | #' plotQn |
| 114 | #' |
| 115 | #' Draw 3D map of objective function values |
| 116 | #' |
| 117 | #' @param N Number of starting points |
| 118 | #' @param β Regression matrix (target) |
| 119 | #' @param link Link function (logit or probit) |
| 120 | #' |
| 121 | #' @export |
| 122 | plotQn <- function(N, n, p, β, b, link) |
| 123 | { |
| 124 | d <- nrow(β) |
| 125 | K <- ncol(β) |
| 126 | io <- generateSampleIO(n, p, β, b, link) |
| 127 | op <- optimParams(K, link, list(X=io$X, Y=io$Y)) |
| 128 | # N random starting points gaussian (TODO: around true β?) |
| 129 | res <- matrix(nrow=d*K+1, ncol=N) |
| 130 | for (i in seq_len(N)) |
| 131 | { |
| 132 | β_init <- rnorm(d*K) |
| 133 | par <- op$run( c(rep(1/K,K-1), β_init, rep(0,K)) ) |
| 134 | par <- op$linArgs(par) |
| 135 | Qn <- op$f(par) |
| 136 | res[,i] = c(Qn, par[K:(K+d*K-1)]) |
| 137 | } |
| 138 | res #TODO: plot this, not just return it... |
| 139 | } |