First commit
[morpheus.git] / pkg / R / plot.R
... / ...
CommitLineData
1# extractParam
2#
3# Extract successive values of a projection of the parameter(s)
4#
5# @inheritParams plotHist
6#
7extractParam <- function(mr, x=1, y=1)
8{
9 # Obtain L vectors where L = number of res lists in mr
10 lapply( mr, function(mr_list) {
11 sapply(mr_list, function(m) m[x,y])
12 } )
13}
14
15#' plotHist
16#'
17#' Plot histogram
18#'
19#' @param mr Output of multiRun(), list of lists of functions results
20#' @param x Row index of the element inside the aggregated parameter
21#' @param y Colomn index of the element inside the aggregated parameter
22#'
23#' @examples
24#' \dontrun{
25#' β <- matrix(c(1,-2,3,1),ncol=2)
26#' mr <- multiRun(...) #see bootstrap example in ?multiRun : return lists of mu_hat
27#' μ <- normalize(β)
28#' for (i in 1:2)
29#' mr[[i]] <- alignMatrices(res[[i]], ref=μ, ls_mode="exact")
30#' plotHist(mr, 2, 1) #second row, first column}
31#' @export
32plotHist <- function(mr, x, y)
33{
34 params <- extractParam(mr, x, y)
35 L = length(params)
36 # Plot histograms side by side
37 par(mfrow=c(1,L), cex.axis=1.5, cex.lab=1.5, mar=c(4.7,5,1,1))
38 for (i in 1:L)
39 hist(params[[i]], breaks=40, freq=FALSE, xlab="Parameter value", ylab="Density")
40}
41
42#' plotBox
43#'
44#' Draw boxplot
45#'
46#' @inheritParams plotHist
47#'
48#' @examples
49#' #See example in ?plotHist
50#' @export
51plotBox <- function(mr, x, y)
52{
53 params <- extractParam(mr, x, y)
54 L = length(params)
55 # Plot boxplots side by side
56 par(mfrow=c(1,L), cex.axis=1.5, cex.lab=1.5, mar=c(4.7,5,1,1))
57 for (i in 1:L)
58 boxplot(params[[i]], ylab="Parameter value")
59}
60
61#' plotCoefs
62#'
63#' Draw coefs estimations + standard deviations
64#'
65#' @inheritParams plotHist
66#' @param params True value of parameters matrix
67#'
68#' @examples
69#' #See example in ?plotHist
70#' @export
71plotCoefs <- function(mr, params)
72{
73 nf <- length(mr)
74 L <- nrow(mr[[1]][[1]])
75 K <- ncol(mr[[1]][[1]])
76
77 params_hat <- vector("list", nf)
78 stdev <- vector("list", nf)
79 for (i in 1:nf)
80 {
81 params_hat[[i]] <- matrix(nrow=L, ncol=K)
82 stdev[[i]] <- matrix(nrow=L, ncol=K)
83 }
84 for (x in 1:L)
85 {
86 for (y in 1:K)
87 {
88 estims <- extractParam(mr, x, y)
89 for (i in 1:nf)
90 {
91 params_hat[[i]][x,y] <- mean(estims[[i]])
92# stdev[[i]][x,y] <- sqrt( mean( (estims[[i]] - params[x,y])^2 ) )
93 # HACK remove extreme quantile in estims[[i]] before computing sd()
94 stdev[[i]][x,y] <- sd( estims[[i]] [ estims[[i]] < max(estims[[i]]) & estims[[i]] > min(estims[[i]]) ] )
95 }
96 }
97 }
98
99 par(mfrow=c(1,nf), cex.axis=1.5, cex.lab=1.5, mar=c(4.7,5,1,1))
100 params <- as.double(params)
101 o <- order(params)
102 for (i in 1:nf)
103 {
104 avg_param <- as.double(params_hat[[i]])
105 std_param <- as.double(stdev[[i]])
106 matplot(cbind(params[o],avg_param[o],avg_param[o]+std_param[o],avg_param[o]-std_param[o]),
107 col=c(2,1,1,1), lty=c(1,1,2,2), type="l", lwd=2, xlab="param", ylab="value")
108 }
109
110 #print(o) #not returning o to avoid weird Jupyter issue... (TODO:)
111}
112
113#' plotQn
114#'
115#' Draw 3D map of objective function values
116#'
117#' @param N Number of starting points
118#' @param β Regression matrix (target)
119#' @param link Link function (logit or probit)
120#'
121#' @export
122plotQn <- function(N, n, p, β, b, link)
123{
124 d <- nrow(β)
125 K <- ncol(β)
126 io <- generateSampleIO(n, p, β, b, link)
127 op <- optimParams(K, link, list(X=io$X, Y=io$Y))
128 # N random starting points gaussian (TODO: around true β?)
129 res <- matrix(nrow=d*K+1, ncol=N)
130 for (i in seq_len(N))
131 {
132 β_init <- rnorm(d*K)
133 par <- op$run( c(rep(1/K,K-1), β_init, rep(0,K)) )
134 par <- op$linArgs(par)
135 Qn <- op$f(par)
136 res[,i] = c(Qn, par[K:(K+d*K-1)])
137 }
138 res #TODO: plot this, not just return it...
139}