| 1 | #' @include de_serialize.R |
| 2 | #' @include clustering.R |
| 3 | NULL |
| 4 | |
| 5 | #' CLAWS: CLustering with wAvelets and Wer distanceS |
| 6 | #' |
| 7 | #' Groups electricity power curves (or any series of similar nature) by applying PAM |
| 8 | #' algorithm in parallel to chunks of size \code{nb_series_per_chunk}. Input series |
| 9 | #' must be sampled on the same time grid, no missing values. |
| 10 | #' |
| 11 | #' @param getSeries Access to the (time-)series, which can be of one of the three |
| 12 | #' following types: |
| 13 | #' \itemize{ |
| 14 | #' \item matrix: each line contains all the values for one time-serie, ordered by time |
| 15 | #' \item connection: any R connection object (e.g. a file) providing lines as described above |
| 16 | #' \item function: a custom way to retrieve the curves; it has only one argument: |
| 17 | #' the indices of the series to be retrieved. See examples |
| 18 | #' } |
| 19 | #' @param K1 Number of super-consumers to be found after stage 1 (K1 << N) |
| 20 | #' @param K2 Number of clusters to be found after stage 2 (K2 << K1) |
| 21 | #' @param random TRUE (default) for random chunks repartition |
| 22 | #' @param wf Wavelet transform filter; see ?wavelets::wt.filter. Default: haar |
| 23 | #' @param WER "end" to apply stage 2 after stage 1 has fully iterated, or "mix" to apply stage 2 |
| 24 | #' at the end of each task |
| 25 | #' @param ntasks Number of tasks (parallel iterations to obtain K1 medoids); default: 1. |
| 26 | #' Note: ntasks << N, so that N is "roughly divisible" by N (number of series) |
| 27 | #' @param ncores_tasks "MPI" number of parallel tasks (1 to disable: sequential tasks) |
| 28 | #' @param ncores_clust "OpenMP" number of parallel clusterings in one task |
| 29 | #' @param nb_series_per_chunk (~Maximum) number of series in each group, inside a task |
| 30 | #' @param min_series_per_chunk Minimum number of series in each group |
| 31 | #' @param sep Separator in CSV input file (relevant only if getSeries is a file name) |
| 32 | #' @param nbytes Number of bytes to serialize a floating-point number; 4 or 8 |
| 33 | #' @param endian Endianness to use for (de)serialization. Use "little" or "big" for portability |
| 34 | #' |
| 35 | #' @return A matrix of the final medoids curves |
| 36 | #' |
| 37 | #' @examples |
| 38 | #' getData = function(start, n) { |
| 39 | #' con = dbConnect(drv = RSQLite::SQLite(), dbname = "mydata.sqlite") |
| 40 | #' df = dbGetQuery(con, paste( |
| 41 | #' "SELECT * FROM times_values GROUP BY id OFFSET ",start, |
| 42 | #' "LIMIT ", n, " ORDER BY date", sep="")) |
| 43 | #' return (df) |
| 44 | #' } |
| 45 | #' #####TODO: if DB, array rank --> ID at first retrieval, when computing coeffs; so:: NO use of IDs ! |
| 46 | #' #TODO: 3 examples, data.frame / binary file / DB sqLite |
| 47 | #' + sampleCurves : wavBootstrap de package wmtsa |
| 48 | #' cl = epclust(getData, K1=200, K2=15, ntasks=1000, nb_series_per_chunk=5000, WER="mix") |
| 49 | #' @export |
| 50 | claws = function(getSeries, K1, K2, |
| 51 | random=TRUE, #randomize series order? |
| 52 | wf="haar", #stage 1 |
| 53 | WER="end", #stage 2 |
| 54 | ntasks=1, ncores_tasks=1, ncores_clust=4, #control parallelism |
| 55 | nb_series_per_chunk=50*K1, min_series_per_chunk=5*K1, #chunk size |
| 56 | sep=",", #ASCII input separator |
| 57 | nbytes=4, endian=.Platform$endian) #serialization (write,read) |
| 58 | { |
| 59 | # Check/transform arguments |
| 60 | if (!is.matrix(getSeries) && !is.function(getSeries) && |
| 61 | !is(getSeries, "connection" && !is.character(getSeries))) |
| 62 | { |
| 63 | stop("'getSeries': matrix, function, file or valid connection (no NA)") |
| 64 | } |
| 65 | K1 = .toInteger(K1, function(x) x>=2) |
| 66 | K2 = .toInteger(K2, function(x) x>=2) |
| 67 | if (!is.logical(random)) |
| 68 | stop("'random': logical") |
| 69 | tryCatch( |
| 70 | {ignored <- wt.filter(wf)}, |
| 71 | error = function(e) stop("Invalid wavelet filter; see ?wavelets::wt.filter")) |
| 72 | if (WER!="end" && WER!="mix") |
| 73 | stop("WER takes values in {'end','mix'}") |
| 74 | ntasks = .toInteger(ntasks, function(x) x>=1) |
| 75 | ncores_tasks = .toInteger(ncores_tasks, function(x) x>=1) |
| 76 | ncores_clust = .toInteger(ncores_clust, function(x) x>=1) |
| 77 | nb_series_per_chunk = .toInteger(nb_series_per_chunk, function(x) x>=K1) |
| 78 | min_series_per_chunk = .toInteger(K1, function(x) x>=K1 && x<=nb_series_per_chunk) |
| 79 | if (!is.character(sep)) |
| 80 | stop("'sep': character") |
| 81 | nbytes = .toInteger(nbytes, function(x) x==4 || x==8) |
| 82 | |
| 83 | # Serialize series if required, to always use a function |
| 84 | bin_dir = "epclust.bin/" |
| 85 | dir.create(bin_dir, showWarnings=FALSE, mode="0755") |
| 86 | if (!is.function(getSeries)) |
| 87 | { |
| 88 | series_file = paste(bin_dir,"data",sep="") ; unlink(series_file) |
| 89 | serialize(getSeries, series_file, nb_series_per_chunk, sep, nbytes, endian) |
| 90 | getSeries = function(indices) getDataInFile(indices, series_file, nbytes, endian) |
| 91 | } |
| 92 | |
| 93 | # Serialize all wavelets coefficients (+ IDs) onto a file |
| 94 | coefs_file = paste(bin_dir,"coefs",sep="") ; unlink(coefs_file) |
| 95 | index = 1 |
| 96 | nb_curves = 0 |
| 97 | repeat |
| 98 | { |
| 99 | series = getSeries((index-1)+seq_len(nb_series_per_chunk)) |
| 100 | if (is.null(series)) |
| 101 | break |
| 102 | coefs_chunk = curvesToCoefs(series, wf) |
| 103 | serialize(coefs_chunk, coefs_file, nb_series_per_chunk, sep, nbytes, endian) |
| 104 | index = index + nb_series_per_chunk |
| 105 | nb_curves = nb_curves + nrow(coefs_chunk) |
| 106 | } |
| 107 | getCoefs = function(indices) getDataInFile(indices, coefs_file, nbytes, endian) |
| 108 | |
| 109 | if (nb_curves < min_series_per_chunk) |
| 110 | stop("Not enough data: less rows than min_series_per_chunk!") |
| 111 | nb_series_per_task = round(nb_curves / ntasks) |
| 112 | if (nb_series_per_task < min_series_per_chunk) |
| 113 | stop("Too many tasks: less series in one task than min_series_per_chunk!") |
| 114 | |
| 115 | # Cluster coefficients in parallel (by nb_series_per_chunk) |
| 116 | indices_all = if (random) sample(nb_curves) else seq_len(nb_curves) |
| 117 | indices_tasks = lapply(seq_len(ntasks), function(i) { |
| 118 | upper_bound = ifelse( i<ntasks, min(nb_series_per_task*i,nb_curves), nb_curves ) |
| 119 | indices_all[((i-1)*nb_series_per_task+1):upper_bound] |
| 120 | }) |
| 121 | cl = parallel::makeCluster(ncores_tasks) |
| 122 | # 1000*K1 indices [if WER=="end"], or empty vector [if WER=="mix"] --> series on file |
| 123 | indices = unlist( parallel::parLapply(cl, indices_tasks, function(inds) { |
| 124 | indices_medoids = clusteringTask(inds,getCoefs,K1,nb_series_per_chunk,ncores_clust) |
| 125 | if (WER=="mix") |
| 126 | { |
| 127 | medoids2 = computeClusters2( |
| 128 | getSeries(indices_medoids), K2, getSeries, nb_series_per_chunk) |
| 129 | serialize(medoids2, synchrones_file, nb_series_per_chunk, sep, nbytes, endian) |
| 130 | return (vector("integer",0)) |
| 131 | } |
| 132 | indices_medoids |
| 133 | }) ) |
| 134 | parallel::stopCluster(cl) |
| 135 | |
| 136 | getRefSeries = getSeries |
| 137 | synchrones_file = paste(bin_dir,"synchrones",sep="") ; unlink(synchrones_file) |
| 138 | if (WER=="mix") |
| 139 | { |
| 140 | indices = seq_len(ntasks*K2) |
| 141 | #Now series must be retrieved from synchrones_file |
| 142 | getSeries = function(inds) getDataInFile(inds, synchrones_file, nbytes, endian) |
| 143 | #Coefs must be re-computed |
| 144 | unlink(coefs_file) |
| 145 | index = 1 |
| 146 | repeat |
| 147 | { |
| 148 | series = getSeries((index-1)+seq_len(nb_series_per_chunk)) |
| 149 | if (is.null(series)) |
| 150 | break |
| 151 | coefs_chunk = curvesToCoefs(series, wf) |
| 152 | serialize(coefs_chunk, coefs_file, nb_series_per_chunk, sep, nbytes, endian) |
| 153 | index = index + nb_series_per_chunk |
| 154 | } |
| 155 | } |
| 156 | |
| 157 | # Run step2 on resulting indices or series (from file) |
| 158 | indices_medoids = clusteringTask( |
| 159 | indices, getCoefs, K1, nb_series_per_chunk, ncores_tasks*ncores_clust) |
| 160 | computeClusters2(getSeries(indices_medoids),K2,getRefSeries,nb_series_per_chunk) |
| 161 | } |
| 162 | |
| 163 | # helper |
| 164 | curvesToCoefs = function(series, wf) |
| 165 | { |
| 166 | L = length(series[1,]) |
| 167 | D = ceiling( log2(L) ) |
| 168 | nb_sample_points = 2^D |
| 169 | t( apply(series, 1, function(x) { |
| 170 | interpolated_curve = spline(1:L, x, n=nb_sample_points)$y |
| 171 | W = wavelets::dwt(interpolated_curve, filter=wf, D)@W |
| 172 | rev( sapply( W, function(v) ( sqrt( sum(v^2) ) ) ) ) |
| 173 | }) ) |
| 174 | } |
| 175 | |
| 176 | # helper |
| 177 | .toInteger <- function(x, condition) |
| 178 | { |
| 179 | if (!is.integer(x)) |
| 180 | tryCatch( |
| 181 | {x = as.integer(x)[1]}, |
| 182 | error = function(e) paste("Cannot convert argument",substitute(x),"to integer") |
| 183 | ) |
| 184 | if (!condition(x)) |
| 185 | stop(paste("Argument",substitute(x),"does not verify condition",body(condition))) |
| 186 | x |
| 187 | } |