| 1 | #main function (choice between kmeans and hierarchical clustering) |
| 2 | getClusters = function(distances, method, K) |
| 3 | { |
| 4 | clusts = c() |
| 5 | if (method=="KM") |
| 6 | { |
| 7 | nstart = 10 #number of kmeans random restarts |
| 8 | maxiter = 100 #maximum iterations count in each km run |
| 9 | clusts = .Call("kmeansWithDistances", distances, K, nstart, maxiter) |
| 10 | } |
| 11 | else if (method=="HC") |
| 12 | { |
| 13 | #simple hierarchical clustering using ECT distances |
| 14 | hct = hclust(as.dist(distances),method="ward.D") |
| 15 | clusts = cutree(hct, K) |
| 16 | } |
| 17 | return (clusts) |
| 18 | } |
| 19 | |
| 20 | # renumbering step (post-processing after clustering) |
| 21 | reordering = function(clusts) |
| 22 | { |
| 23 | newCl = clusts |
| 24 | maxInd = max(clusts) |
| 25 | counter = 1 |
| 26 | for (i in 1:maxInd) |
| 27 | { |
| 28 | if (sum(clusts == i) > 0) |
| 29 | { |
| 30 | newCl[clusts == i] = counter |
| 31 | counter = counter + 1 |
| 32 | } |
| 33 | } |
| 34 | return (newCl) |
| 35 | } |