fix plotting; TODO: tests, reports
[talweg.git] / pkg / R / plot.R
CommitLineData
e030a6e3
BA
1#' @title plot curves
2#'
3#' @description Plot a range of curves in data
4#'
5#' @param data Object of class Data
6#' @param indices Range of indices (integers or dates)
7#'
8#' @export
1e20780e 9plotCurves <- function(data, indices=seq_len(data$getSize()))
e030a6e3 10{
fa8078f9 11 yrange = quantile( range( sapply( indices, function(i) {
e030a6e3
BA
12 serie = c(data$getCenteredSerie(i))
13 if (!all(is.na(serie)))
14 range(serie, na.rm=TRUE)
15 c()
fa8078f9 16 }) ), probs=c(0.05,0.95) )
e030a6e3
BA
17 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
18 for (i in seq_along(indices))
19 {
20 plot(data$getSerie(indices[i]), type="l", ylim=yrange,
21 xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10",""))
1e20780e 22 if (i < length(indices))
e030a6e3
BA
23 par(new=TRUE)
24 }
25}
26
3d69ff21
BA
27#' @title plot measured / predicted
28#'
29#' @description Plot measured curve (in black) and predicted curve (in red)
30#'
31#' @param data Object return by \code{getData}
32#' @param pred Object as returned by \code{getForecast}
33#' @param index Index in forecasts
34#'
35#' @export
36plotPredReal <- function(data, pred, index)
37{
38 horizon = length(pred$getSerie(1))
3d69ff21
BA
39 measure = data$getSerie(pred$getIndexInData(index)+1)[1:horizon]
40 yrange = range( pred$getSerie(index), measure )
1e20780e 41 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3)
4e95ec8f 42 plot(measure, type="l", ylim=yrange, xlab="Temps (en heures)", ylab="PM10")
3d69ff21 43 par(new=TRUE)
4e95ec8f 44 plot(pred$getSerie(index), type="l", col="#0000FF", ylim=yrange, xlab="", ylab="")
3d69ff21
BA
45}
46
fa8078f9 47#' @title Compute filaments
3d69ff21 48#'
fa8078f9 49#' @description Get similar days in the past + "past tomorrow", as black as distances are small
3d69ff21
BA
50#'
51#' @param data Object as returned by \code{getData}
52#' @param index Index in data
53#' @param limit Number of neighbors to consider
fa8078f9 54#' @param plot Should the result be plotted?
3d69ff21
BA
55#'
56#' @export
fa8078f9 57computeFilaments <- function(data, index, limit=60, plot=TRUE)
3d69ff21
BA
58{
59 index = dateIndexToInteger(index, data)
60 ref_serie = data$getCenteredSerie(index)
61 if (any(is.na(ref_serie)))
fa8078f9 62 stop("computeFilaments requires a serie without NAs")
3d69ff21 63 L = length(ref_serie)
1e20780e 64
16b1c049
BA
65 # Determine indices of no-NAs days followed by no-NAs tomorrows
66 first_day = ifelse(length(data$getCenteredSerie(1))<L, 2, 1)
67 fdays_indices = c()
68 for (i in first_day:(index-1))
69 {
70 if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) )
71 fdays_indices = c(fdays_indices, i)
72 }
1e20780e 73
16b1c049
BA
74 distances = sapply(fdays_indices, function(i) {
75 sqrt( sum( (ref_serie - data$getCenteredSerie(i))^2 ) / L )
76 })
1e20780e 77 indices = sort(distances, index.return=TRUE)$ix[1:min(limit,length(distances))]
fa8078f9 78 yrange = quantile( range( ref_serie, sapply( indices, function(i) {
16b1c049 79 ii = fdays_indices[i]
1e20780e 80 serie = c(data$getCenteredSerie(ii), data$getCenteredSerie(ii+1))
3d69ff21 81 if (!all(is.na(serie)))
e5aa669a 82 return (range(serie, na.rm=TRUE))
e030a6e3 83 c()
1e20780e 84 }) ), probs=c(0.05,0.95) )
3d69ff21 85 grays = gray.colors(20, 0.1, 0.9) #TODO: 20 == magic number
16b1c049
BA
86 min_dist = min(distances[indices])
87 max_dist = max(distances[indices])
88 color_values = floor( 19.5 * (distances[indices]-min_dist) / (max_dist-min_dist) ) + 1
89 plot_order = sort(color_values, index.return=TRUE, decreasing=TRUE)$ix
fa8078f9
BA
90 colors = c(grays[ color_values[plot_order] ], "#FF0000")
91 if (plot)
3d69ff21 92 {
fa8078f9 93 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
16b1c049 94 for ( i in seq_len(length(indices)+1) )
fa8078f9 95 {
16b1c049
BA
96 ii = ifelse(i<=length(indices), fdays_indices[ indices[plot_order[i]] ], index)
97 plot(c(data$getCenteredSerie(ii),data$getCenteredSerie(ii+1)),
fa8078f9
BA
98 ylim=yrange, type="l", col=colors[i],
99 xlab=ifelse(i==1,"Temps (en heures)",""), ylab=ifelse(i==1,"PM10 centré",""))
100 if (i <= length(indices))
101 par(new=TRUE)
102 }
16b1c049 103 abline(v=24, lty=2, col=colors()[56])
3d69ff21 104 }
16b1c049 105 list("indices"=c(fdays_indices[ indices[plot_order] ],index), "colors"=colors)
3d69ff21
BA
106}
107
108#' @title Plot similarities
109#'
110#' @description Plot histogram of similarities (weights)
111#'
112#' @param pred Object as returned by \code{getForecast}
113#' @param index Index in forecasts (not in data)
114#'
115#' @export
116plotSimils <- function(pred, index)
117{
118 weights = pred$getParams(index)$weights
119 if (is.null(weights))
120 stop("plotSimils only works on 'Neighbors' forecasts")
4e95ec8f
BA
121 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
122 hist(pred$getParams(index)$weights, nclass=20, xlab="Poids", ylab="Effectif")
3d69ff21
BA
123}
124
125#' @title Plot error
126#'
127#' @description Draw error graphs, potentially from several runs of \code{getForecast}
128#'
129#' @param err Error as returned by \code{getError}
09cf9c19 130#' @param cols Colors for each error (default: 1,2,3,...)
3d69ff21
BA
131#'
132#' @seealso \code{\link{plotPredReal}}, \code{\link{plotFilaments}}, \code{\link{plotSimils}}
133#' \code{\link{plotFbox}}
134#'
135#' @export
09cf9c19 136plotError <- function(err, cols=seq_along(err))
3d69ff21 137{
09cf9c19
BA
138 if (!is.null(err$abs))
139 err = list(err)
4e95ec8f 140 par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2)
3d69ff21
BA
141 L = length(err)
142 yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$day ) ), na.rm=TRUE )
143 for (i in seq_len(L))
144 {
145 plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
09cf9c19 146 ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
3d69ff21
BA
147 if (i < L)
148 par(new=TRUE)
149 }
150 yrange = range( sapply(1:L, function(index) ( err[[index]]$abs$indices ) ), na.rm=TRUE )
151 for (i in seq_len(L))
152 {
153 plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
09cf9c19 154 ylab=ifelse(i==1,"Moyenne |y - y_hat|",""), ylim=yrange, col=cols[i])
3d69ff21
BA
155 if (i < L)
156 par(new=TRUE)
157 }
158 yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$day ) ), na.rm=TRUE )
159 for (i in seq_len(L))
160 {
161 plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Temps (heures)",""),
09cf9c19 162 ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
3d69ff21
BA
163 if (i < L)
164 par(new=TRUE)
165 }
166 yrange = range( sapply(1:L, function(index) ( err[[index]]$MAPE$indices ) ), na.rm=TRUE )
167 for (i in seq_len(L))
168 {
169 plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Temps (jours)",""),
09cf9c19 170 ylab=ifelse(i==1,"MAPE moyen",""), ylim=yrange, col=cols[i])
3d69ff21
BA
171 if (i < L)
172 par(new=TRUE)
173 }
174}
175
176#' @title Functional boxplot
177#'
178#' @description Draw the functional boxplot on the left, and bivariate plot on the right
179#'
180#' @param data Object return by \code{getData}
181#' @param fiter Optional filter: return TRUE on indices to process
fa8078f9 182#' @param plot_bivariate Should the bivariate plot appear?
3d69ff21
BA
183#'
184#' @export
fa8078f9 185plotFbox <- function(data, filter=function(index) TRUE, plot_bivariate=TRUE)
3d69ff21
BA
186{
187 if (!requireNamespace("rainbow", quietly=TRUE))
188 stop("Functional boxplot requires the rainbow package")
189
190 start_index = 1
191 end_index = data$getSize()
192 if (length(data$getCenteredSerie(1)) < length(data$getCenteredSerie(2)))
193 {
194 # Shifted start (7am, or 1pm, or...)
195 start_index = 2
196 end_index = data$getSize() - 1
197 }
198
199 series_matrix = sapply(start_index:end_index, function(index) {
200 as.matrix(data$getSerie(index))
201 })
202 # Remove NAs. + filter TODO: merge with previous step: only one pass required...
203 nas_indices = seq_len(ncol(series_matrix))[ sapply( 1:ncol(series_matrix),
204 function(index) ( !filter(index) || any(is.na(series_matrix[,index])) ) ) ]
205 series_matrix = series_matrix[,-nas_indices]
206
207 series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix)
fa8078f9
BA
208 if (plot_bivariate)
209 par(mfrow=c(1,2))
210 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
3d69ff21
BA
211 rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Temps (heures)", ylab="PM10",
212 plotlegend=FALSE, lwd=2)
fa8078f9
BA
213 if (plot_bivariate)
214 rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE)
215}
216
217#' @title Functional boxplot on filaments
218#'
219#' @description Draw the functional boxplot on filaments obtained by \code{computeFilaments}
220#'
221#' @param data Object return by \code{getData}
222#' @param indices Indices as output by \code{computeFilaments}
223#'
224#' @export
225plotFilamentsBox = function(data, indices, ...)
226{
227 past_neighbs_indices = head(indices,-1)
228 plotFbox(data, function(i) i %in% past_neighbs_indices, plot_bivariate=FALSE)
229 par(new=TRUE)
230 # "Magic" found at http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r
231 usr <- par("usr")
232 yr <- (usr[4] - usr[3]) / 27
233 plot(data$getSerie(tail(indices,1)), type="l", lwd=2, lty=2,
234 ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="")
3d69ff21 235}
16b1c049
BA
236
237#' @title Plot relative conditional variability / absolute variability
238#'
239#' @description Draw the relative conditional variability / absolute variability based on on
240#' filaments obtained by \code{computeFilaments}
241#'
242#' @param data Object return by \code{getData}
243#' @param indices Indices as output by \code{computeFilaments}
244#'
245#' @export
246plotRelativeVariability = function(data, indices, ...)
247{
248 #plot left / right separated by vertical line brown dotted
249 #median of 3 runs for random length(indices) series
250 ref_series = t( sapply(indices, function(i) {
251 c( data$getSerie(i), data$getSerie(i+1) )
252 }) )
253 ref_var = apply(ref_series, 2, sd)
254
255 # Determine indices of no-NAs days followed by no-NAs tomorrows
256 first_day = ifelse(length(data$getCenteredSerie(1))<length(ref_series[1,]), 2, 1)
257 fdays_indices = c()
258 for (i in first_day:(tail(indices,1)-1))
259 {
260 if ( !any(is.na(data$getSerie(i)) | is.na(data$getSerie(i+1))) )
261 fdays_indices = c(fdays_indices, i)
262 }
263
264 # TODO: 3 == magic number
265 random_var = matrix(nrow=3, ncol=48)
266 for (mc in seq_len(nrow(random_var)))
267 {
268 random_indices = sample(fdays_indices, length(indices))
269 random_series = t( sapply(random_indices, function(i) {
270 c( data$getSerie(i), data$getSerie(i+1) )
271 }) )
272 random_var[mc,] = apply(random_series, 2, sd)
273 }
274 random_var = apply(random_var, 2, median)
275
276 yrange = range(ref_var, random_var)
277 par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5)
278 plot(ref_var, type="l", col=1, lwd=3, ylim=yrange, xlab="Temps (heures)", ylab="Écart-type")
279 par(new=TRUE)
280 plot(random_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="")
281 abline(v=24, lty=2, col=colors()[56])
282}