Commit | Line | Data |
---|---|---|
98e958ca | 1 | #' Plot curves |
e030a6e3 | 2 | #' |
102bcfda | 3 | #' Plot a range of curves in data. |
e030a6e3 | 4 | #' |
102bcfda | 5 | #' @inheritParams computeError |
e030a6e3 BA |
6 | #' @param indices Range of indices (integers or dates) |
7 | #' | |
8 | #' @export | |
1e20780e | 9 | plotCurves <- function(data, indices=seq_len(data$getSize())) |
e030a6e3 | 10 | { |
98e958ca | 11 | series = data$getSeries(indices) |
a5a3a294 | 12 | yrange = quantile(series, probs=c(0.025,0.975), na.rm=TRUE) |
e030a6e3 | 13 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) |
4f3fdbb8 | 14 | matplot(series, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") |
e030a6e3 BA |
15 | } |
16 | ||
af3b84f4 | 17 | #' Plot error |
3d69ff21 | 18 | #' |
102bcfda | 19 | #' Draw error graphs, potentially from several runs of \code{computeForecast()}. |
3d69ff21 | 20 | #' |
102bcfda | 21 | #' @param err Error as returned by \code{computeError()} |
09cf9c19 | 22 | #' @param cols Colors for each error (default: 1,2,3,...) |
3d69ff21 | 23 | #' |
98e958ca | 24 | #' @seealso \code{\link{plotCurves}}, \code{\link{plotPredReal}}, |
72b9c501 BA |
25 | #' \code{\link{plotSimils}}, \code{\link{plotFbox}}, \code{\link{computeFilaments}}, |
26 | #' \code{\link{plotFilamentsBox}}, \code{\link{plotRelVar}} | |
3d69ff21 BA |
27 | #' |
28 | #' @export | |
09cf9c19 | 29 | plotError <- function(err, cols=seq_along(err)) |
3d69ff21 | 30 | { |
09cf9c19 BA |
31 | if (!is.null(err$abs)) |
32 | err = list(err) | |
4e95ec8f | 33 | par(mfrow=c(2,2), mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) |
3d69ff21 | 34 | L = length(err) |
98e958ca | 35 | yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$day ) ), na.rm=TRUE ) |
3d69ff21 BA |
36 | for (i in seq_len(L)) |
37 | { | |
4e25de2c BA |
38 | plot(err[[i]]$abs$day, type="l", xlab=ifelse(i==1,"Time (hours)",""), |
39 | ylab=ifelse(i==1,"Mean |y - y_hat|",""), ylim=yrange, col=cols[i]) | |
3d69ff21 BA |
40 | if (i < L) |
41 | par(new=TRUE) | |
42 | } | |
98e958ca | 43 | yrange = range( sapply(1:L, function(i) ( err[[i]]$abs$indices ) ), na.rm=TRUE ) |
3d69ff21 BA |
44 | for (i in seq_len(L)) |
45 | { | |
4e25de2c BA |
46 | plot(err[[i]]$abs$indices, type="l", xlab=ifelse(i==1,"Time (days)",""), |
47 | ylab=ifelse(i==1,"Mean |y - y_hat|",""), ylim=yrange, col=cols[i]) | |
3d69ff21 BA |
48 | if (i < L) |
49 | par(new=TRUE) | |
50 | } | |
98e958ca | 51 | yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$day ) ), na.rm=TRUE ) |
3d69ff21 BA |
52 | for (i in seq_len(L)) |
53 | { | |
4e25de2c BA |
54 | plot(err[[i]]$MAPE$day, type="l", xlab=ifelse(i==1,"Time (hours)",""), |
55 | ylab=ifelse(i==1,"Mean MAPE",""), ylim=yrange, col=cols[i]) | |
3d69ff21 BA |
56 | if (i < L) |
57 | par(new=TRUE) | |
58 | } | |
98e958ca | 59 | yrange = range( sapply(1:L, function(i) ( err[[i]]$MAPE$indices ) ), na.rm=TRUE ) |
3d69ff21 BA |
60 | for (i in seq_len(L)) |
61 | { | |
4e25de2c BA |
62 | plot(err[[i]]$MAPE$indices, type="l", xlab=ifelse(i==1,"Time (days)",""), |
63 | ylab=ifelse(i==1,"Mean MAPE",""), ylim=yrange, col=cols[i]) | |
3d69ff21 BA |
64 | if (i < L) |
65 | par(new=TRUE) | |
66 | } | |
67 | } | |
68 | ||
98e958ca BA |
69 | #' Plot measured / predicted |
70 | #' | |
102bcfda | 71 | #' Plot measured curve (in black) and predicted curve (in blue). |
98e958ca | 72 | #' |
102bcfda | 73 | #' @inheritParams computeError |
98e958ca BA |
74 | #' @param index Index in forecasts (integer or date) |
75 | #' | |
76 | #' @export | |
77 | plotPredReal <- function(data, pred, index) | |
78 | { | |
72b9c501 | 79 | prediction = pred$getForecast(index) |
e7bc2af6 | 80 | measure = data$getSerie( pred$getIndexInData(index) )[1:length(prediction)] |
98e958ca BA |
81 | yrange = range(measure, prediction) |
82 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=3) | |
4e25de2c | 83 | plot(measure, type="l", ylim=yrange, xlab="Time (hours)", ylab="PM10") |
98e958ca BA |
84 | par(new=TRUE) |
85 | plot(prediction, type="l", col="#0000FF", ylim=yrange, xlab="", ylab="") | |
86 | } | |
87 | ||
88 | #' Plot similarities | |
89 | #' | |
102bcfda | 90 | #' Plot histogram of similarities (weights), for 'Neighbors' method. |
98e958ca | 91 | #' |
102bcfda | 92 | #' @inheritParams computeError |
98e958ca BA |
93 | #' @param index Index in forecasts (integer or date) |
94 | #' | |
95 | #' @export | |
96 | plotSimils <- function(pred, index) | |
97 | { | |
98 | weights = pred$getParams(index)$weights | |
99 | if (is.null(weights)) | |
100 | stop("plotSimils only works on 'Neighbors' forecasts") | |
101 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) | |
4e25de2c | 102 | hist(pred$getParams(index)$weights, nclass=20, main="", xlab="Weight", ylab="Count") |
98e958ca BA |
103 | } |
104 | ||
af3b84f4 | 105 | #' Functional boxplot |
3d69ff21 | 106 | #' |
102bcfda | 107 | #' Draw the functional boxplot on the left, and bivariate plot on the right. |
3d69ff21 | 108 | #' |
102bcfda BA |
109 | #' @inheritParams computeError |
110 | #' @inheritParams plotCurves | |
3d69ff21 BA |
111 | #' |
112 | #' @export | |
98e958ca | 113 | plotFbox <- function(data, indices=seq_len(data$getSize())) |
3d69ff21 BA |
114 | { |
115 | if (!requireNamespace("rainbow", quietly=TRUE)) | |
116 | stop("Functional boxplot requires the rainbow package") | |
117 | ||
98e958ca BA |
118 | series_matrix = data$getSeries(indices) |
119 | # Remove series with NAs | |
af3b84f4 BA |
120 | no_NAs_indices = sapply( 1:ncol(series_matrix), |
121 | function(i) all(!is.na(series_matrix[,i])) ) | |
99f83c9a | 122 | series_matrix = series_matrix[,no_NAs_indices] |
3d69ff21 BA |
123 | |
124 | series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) | |
fa8078f9 | 125 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) |
4e25de2c | 126 | rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", |
3d69ff21 | 127 | plotlegend=FALSE, lwd=2) |
98e958ca BA |
128 | rainbow::fboxplot(series_fds, "bivariate", "hdr", plotlegend=FALSE) |
129 | } | |
130 | ||
131 | #' Compute filaments | |
132 | #' | |
102bcfda BA |
133 | #' Obtain similar days in the past, and (optionally) plot them -- as black as distances |
134 | #' are small. | |
98e958ca | 135 | #' |
102bcfda | 136 | #' @inheritParams computeError |
8f84543c | 137 | #' @param index Index in forecast (integer or date) |
98e958ca BA |
138 | #' @param limit Number of neighbors to consider |
139 | #' @param plot Should the result be plotted? | |
d2ab47a7 | 140 | #' @param predict_from First prediction instant |
98e958ca BA |
141 | #' |
142 | #' @return A list with | |
143 | #' \itemize{ | |
144 | #' \item index : index of the current serie ('today') | |
145 | #' \item neighb_indices : indices of its neighbors | |
146 | #' \item colors : colors of neighbors curves (shades of gray) | |
147 | #' } | |
148 | #' | |
149 | #' @export | |
d2ab47a7 | 150 | computeFilaments <- function(data, pred, index, predict_from, limit=60, plot=TRUE) |
98e958ca | 151 | { |
d2ab47a7 | 152 | if (is.null(pred$getParams(index)$weights) || is.na(pred$getParams(index)$weights[1])) |
98e958ca BA |
153 | stop("computeFilaments requires a serie without NAs") |
154 | ||
98e958ca | 155 | # Compute colors for each neighbor (from darkest to lightest) |
8f84543c BA |
156 | sorted_dists = sort(-log(pred$getParams(index)$weights), index.return=TRUE) |
157 | nn = min(limit, length(sorted_dists$x)) | |
158 | min_dist = min(sorted_dists$x[1:nn]) | |
159 | max_dist = max(sorted_dists$x[1:nn]) | |
160 | color_values = floor(19.5*(sorted_dists$x[1:nn]-min_dist)/(max_dist-min_dist)) + 1 | |
98e958ca BA |
161 | colors = gray.colors(20,0.1,0.9)[color_values] #TODO: 20 == magic number |
162 | ||
163 | if (plot) | |
164 | { | |
165 | # Complete series with (past and present) tomorrows | |
d2ab47a7 BA |
166 | ref_serie = c( data$getCenteredSerie( pred$getIndexInData(index)-1 ), |
167 | data$getCenteredSerie( pred$getIndexInData(index) ) ) | |
8f84543c | 168 | centered_series = rbind( |
9e0f25f6 BA |
169 | data$getCenteredSeries( pred$getParams(index)$indices-1 ), |
170 | data$getCenteredSeries( pred$getParams(index)$indices ) ) | |
72b9c501 BA |
171 | yrange = range( ref_serie, |
172 | quantile(centered_series, probs=c(0.025,0.975), na.rm=TRUE) ) | |
98e958ca BA |
173 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5, lwd=2) |
174 | for (i in nn:1) | |
175 | { | |
8f84543c | 176 | plot(centered_series[,sorted_dists$ix[i]], ylim=yrange, type="l", col=colors[i], |
4e25de2c | 177 | xlab=ifelse(i==1,"Time (hours)",""), ylab=ifelse(i==1,"Centered PM10","")) |
98e958ca BA |
178 | par(new=TRUE) |
179 | } | |
180 | # Also plot ref curve, in red | |
181 | plot(ref_serie, ylim=yrange, type="l", col="#FF0000", xlab="", ylab="") | |
d2ab47a7 | 182 | abline(v=24+predict_from-0.5, lty=2, col=colors()[56], lwd=1) |
98e958ca BA |
183 | } |
184 | ||
8f84543c BA |
185 | list( |
186 | "index"=pred$getIndexInData(index), | |
187 | "neighb_indices"=pred$getParams(index)$indices[sorted_dists$ix[1:nn]], | |
188 | "colors"=colors) | |
fa8078f9 BA |
189 | } |
190 | ||
af3b84f4 | 191 | #' Functional boxplot on filaments |
fa8078f9 | 192 | #' |
102bcfda | 193 | #' Draw the functional boxplot on filaments obtained by \code{computeFilaments()}. |
fa8078f9 | 194 | #' |
102bcfda | 195 | #' @inheritParams computeError |
98e958ca | 196 | #' @param fil Output of \code{computeFilaments} |
fa8078f9 BA |
197 | #' |
198 | #' @export | |
d2ab47a7 | 199 | plotFilamentsBox = function(data, fil, predict_from) |
fa8078f9 | 200 | { |
98e958ca BA |
201 | if (!requireNamespace("rainbow", quietly=TRUE)) |
202 | stop("Functional boxplot requires the rainbow package") | |
203 | ||
204 | series_matrix = rbind( | |
3fd7377d | 205 | data$getSeries(fil$neighb_indices-1), data$getSeries(fil$neighb_indices) ) |
98e958ca | 206 | series_fds = rainbow::fds(seq_len(nrow(series_matrix)), series_matrix) |
3fd7377d | 207 | |
98e958ca | 208 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) |
4e25de2c | 209 | rainbow::fboxplot(series_fds, "functional", "hdr", xlab="Time (hours)", ylab="PM10", |
98e958ca BA |
210 | plotlegend=FALSE, lwd=2) |
211 | ||
72b9c501 | 212 | # "Magic": http://stackoverflow.com/questions/13842560/get-xlim-from-a-plot-in-r |
fa8078f9 BA |
213 | usr <- par("usr") |
214 | yr <- (usr[4] - usr[3]) / 27 | |
98e958ca | 215 | par(new=TRUE) |
a5a3a294 | 216 | plot(c(data$getSerie(fil$index),data$getSerie(fil$index+1)), type="l", lwd=2, lty=2, |
fa8078f9 | 217 | ylim=c(usr[3] + yr, usr[4] - yr), xlab="", ylab="") |
d2ab47a7 | 218 | abline(v=24+predict_from-0.5, lty=2, col=colors()[56]) |
3d69ff21 | 219 | } |
16b1c049 | 220 | |
af3b84f4 | 221 | #' Plot relative conditional variability / absolute variability |
16b1c049 | 222 | #' |
af3b84f4 | 223 | #' Draw the relative conditional variability / absolute variability based on filaments |
102bcfda | 224 | #' obtained by \code{computeFilaments()}. |
16b1c049 | 225 | #' |
102bcfda BA |
226 | #' @inheritParams computeError |
227 | #' @inheritParams plotFilamentsBox | |
16b1c049 BA |
228 | #' |
229 | #' @export | |
d2ab47a7 | 230 | plotRelVar = function(data, fil, predict_from) |
16b1c049 | 231 | { |
3fd7377d BA |
232 | ref_var = c( apply(data$getSeries(fil$neighb_indices-1),1,sd), |
233 | apply(data$getSeries(fil$neighb_indices),1,sd) ) | |
cf3bb001 | 234 | tdays = .getNoNA2(data, 2, fil$index) |
72b9c501 | 235 | global_var = c( |
cf3bb001 BA |
236 | apply(data$getSeries(tdays-1),1,sd), |
237 | apply(data$getSeries(tdays),1,sd) ) | |
16b1c049 | 238 | |
af3b84f4 | 239 | yrange = range(ref_var, global_var) |
16b1c049 | 240 | par(mar=c(4.7,5,1,1), cex.axis=1.5, cex.lab=1.5) |
af3b84f4 | 241 | plot(ref_var, type="l", col=1, lwd=3, ylim=yrange, |
4e25de2c | 242 | xlab="Time (hours)", ylab="Standard deviation") |
16b1c049 | 243 | par(new=TRUE) |
98e958ca | 244 | plot(global_var, type="l", col=2, lwd=3, ylim=yrange, xlab="", ylab="") |
d2ab47a7 | 245 | abline(v=24+predict_from-0.5, lty=2, col=colors()[56]) |
16b1c049 | 246 | } |