Commit | Line | Data |
---|---|---|
102bcfda | 1 | #' getData |
3d69ff21 | 2 | #' |
102bcfda BA |
3 | #' Acquire data as a Data object; see ?Data. |
4 | #' | |
5 | #' Since series are given in columns (database format), this function builds series one | |
6 | #' by one and incrementally grows a Data object which is finally returned. | |
3d69ff21 BA |
7 | #' |
8 | #' @param ts_data Time-series, as a data frame (DB style: 2 columns, first is date/time, | |
102bcfda BA |
9 | #' second is value) or a CSV file. |
10 | #' @param exo_data Exogenous variables, as a data frame or a CSV file; first column is | |
72b9c501 | 11 | #' dates, next block are measurements for the day, and final block are exogenous |
102bcfda | 12 | #' forecasts (for the same day). |
3d69ff21 | 13 | #' @param date_format How date/time are stored (e.g. year/month/day hour:minutes; |
102bcfda | 14 | #' see ?strptime) |
f17665c7 | 15 | #' @param limit Number of days to extract (default: Inf, for "all") |
3d69ff21 | 16 | #' |
a66a84b5 | 17 | #' @return An object of class Data |
3d69ff21 | 18 | #' |
44a9990b BA |
19 | #' @examples |
20 | #' ts_data = read.csv(system.file("extdata","pm10_mesures_H_loc.csv",package="talweg")) | |
21 | #' exo_data = read.csv(system.file("extdata","meteo_extra_noNAs.csv",package="talweg")) | |
25b75559 | 22 | #' data = getData(ts_data, exo_data, limit=120) |
3d69ff21 | 23 | #' @export |
d2ab47a7 | 24 | getData = function(ts_data, exo_data, date_format="%d/%m/%Y %H:%M", limit=Inf) |
3d69ff21 BA |
25 | { |
26 | # Sanity checks (not full, but sufficient at this stage) | |
6d97bfec BA |
27 | if ( (!is.data.frame(ts_data) && !is.character(ts_data)) || |
28 | (!is.data.frame(exo_data) && !is.character(exo_data)) ) | |
613a986f | 29 | stop("Bad time-series / exogenous input (data frame or CSV file)") |
3d69ff21 BA |
30 | if (is.character(ts_data)) |
31 | ts_data = ts_data[1] | |
6d97bfec BA |
32 | if (is.character(exo_data)) |
33 | exo_data = exo_data[1] | |
3d69ff21 BA |
34 | if (!is.character(date_format)) |
35 | stop("Bad date_format (character)") | |
36 | date_format = date_format[1] | |
d2ab47a7 BA |
37 | if (!is.numeric(limit) || limit < 0) |
38 | stop("limit: positive integer") | |
3d69ff21 BA |
39 | |
40 | ts_df = | |
613a986f BA |
41 | if (is.character(ts_data)) |
42 | read.csv(ts_data) | |
43 | else | |
3d69ff21 | 44 | ts_data |
d2ab47a7 BA |
45 | # Convert to GMT (pretend it's GMT; no impact) |
46 | dates_POSIXlt = strptime(as.character(ts_df[,1]), date_format, tz="GMT") | |
47 | ts_df[,1] = format(as.POSIXct(dates_POSIXlt, tz="GMT"), tz="GMT", usetz=TRUE) | |
7f90df63 | 48 | |
3d69ff21 | 49 | exo_df = |
613a986f | 50 | if (is.character(exo_data)) |
3d69ff21 | 51 | read.csv(exo_data) |
613a986f | 52 | else |
3d69ff21 | 53 | exo_data |
7f90df63 | 54 | # Times in exogenous variables file are ignored: no conversions required |
3d69ff21 | 55 | |
3d69ff21 BA |
56 | line = 1 #index in PM10 file (24 lines for 1 cell) |
57 | nb_lines = nrow(ts_df) | |
58 | nb_exos = ( ncol(exo_df) - 1 ) / 2 | |
a66a84b5 | 59 | data = Data$new() |
3d69ff21 BA |
60 | i = 1 #index of a cell in data |
61 | while (line <= nb_lines) | |
62 | { | |
63 | time = c() | |
64 | serie = c() | |
09cf9c19 | 65 | repeat |
3d69ff21 | 66 | { |
09cf9c19 BA |
67 | { |
68 | time = c(time, ts_df[line,1]) | |
69 | serie = c(serie, ts_df[line,2]) | |
70 | line = line + 1 | |
71 | }; | |
72b9c501 | 72 | if (line >= nb_lines + 1 |
d2ab47a7 | 73 | || as.POSIXlt(ts_df[line-1,1],tz="GMT")$hour == 0) |
72b9c501 | 74 | { |
09cf9c19 | 75 | break |
72b9c501 | 76 | } |
09cf9c19 | 77 | } |
3d69ff21 | 78 | |
d2ab47a7 BA |
79 | # TODO: 2 modes, "operational" and "testing"; would need PM10 predictions |
80 | data$append(time=time, value=serie, level_hat=mean(serie,na.rm=TRUE), | |
81 | exo=exo_df[i,2:(1+nb_exos)], exo_hat=exo_df[i,(1+nb_exos+1):(1+2*nb_exos)]) | |
1e20780e BA |
82 | if (i >= limit) |
83 | break | |
84 | i = i + 1 | |
3d69ff21 | 85 | } |
f17665c7 | 86 | data |
3d69ff21 | 87 | } |