Commit | Line | Data |
---|---|---|
e030a6e3 | 1 | #' @include Forecaster.R |
3d69ff21 | 2 | #' |
25b75559 | 3 | #' Neighbors Forecaster |
3d69ff21 | 4 | #' |
25b75559 BA |
5 | #' Predict tomorrow as a weighted combination of "futures of the past" days. |
6 | #' Inherits \code{\link{Forecaster}} | |
546b0cb6 | 7 | #' |
25b75559 | 8 | NeighborsForecaster = R6::R6Class("NeighborsForecaster", |
a66a84b5 | 9 | inherit = Forecaster, |
25b75559 BA |
10 | |
11 | public = list( | |
98e958ca | 12 | predictShape = function(data, today, memory, horizon, ...) |
3d69ff21 BA |
13 | { |
14 | # (re)initialize computed parameters | |
a66a84b5 | 15 | private$.params <- list("weights"=NA, "indices"=NA, "window"=NA) |
3d69ff21 | 16 | |
a5a3a294 BA |
17 | # Do not forecast on days with NAs (TODO: softer condition...) |
18 | if (any(is.na(data$getCenteredSerie(today)))) | |
19 | return (NA) | |
20 | ||
af3b84f4 | 21 | # Determine indices of no-NAs days followed by no-NAs tomorrows |
98e958ca | 22 | fdays = getNoNA2(data, max(today-memory,1), today-1) |
af3b84f4 | 23 | |
f17665c7 BA |
24 | # Get optional args |
25 | simtype = ifelse(hasArg("simtype"), list(...)$simtype, "mix") #or "endo", or "exo" | |
26 | kernel = ifelse(hasArg("kernel"), list(...)$kernel, "Gauss") #or "Epan" | |
27 | if (hasArg(h_window)) | |
a66a84b5 | 28 | { |
98e958ca | 29 | return ( private$.predictShapeAux(data, |
a66a84b5 BA |
30 | fdays, today, horizon, list(...)$h_window, kernel, simtype, TRUE) ) |
31 | } | |
3d69ff21 | 32 | |
f17665c7 BA |
33 | # Indices of similar days for cross-validation; TODO: 45 = magic number |
34 | sdays = getSimilarDaysIndices(today, limit=45, same_season=FALSE) | |
3d69ff21 BA |
35 | |
36 | # Function to optimize h : h |--> sum of prediction errors on last 45 "similar" days | |
37 | errorOnLastNdays = function(h, kernel, simtype) | |
38 | { | |
39 | error = 0 | |
40 | nb_jours = 0 | |
f17665c7 | 41 | for (i in intersect(fdays,sdays)) |
3d69ff21 | 42 | { |
f17665c7 | 43 | # mix_strategy is never used here (simtype != "mix"), therefore left blank |
98e958ca BA |
44 | prediction = private$.predictShapeAux(data, |
45 | fdays, i, horizon, h, kernel, simtype, FALSE) | |
f17665c7 | 46 | if (!is.na(prediction[1])) |
3d69ff21 BA |
47 | { |
48 | nb_jours = nb_jours + 1 | |
af3b84f4 | 49 | error = error + |
98e958ca | 50 | mean((data$getCenteredSerie(i+1)[1:horizon] - prediction)^2) |
3d69ff21 BA |
51 | } |
52 | } | |
53 | return (error / nb_jours) | |
54 | } | |
55 | ||
f17665c7 | 56 | if (simtype != "endo") |
af3b84f4 BA |
57 | { |
58 | h_best_exo = optimize( | |
59 | errorOnLastNdays, c(0,10), kernel=kernel, simtype="exo")$minimum | |
60 | } | |
3d69ff21 | 61 | if (simtype != "exo") |
af3b84f4 BA |
62 | { |
63 | h_best_endo = optimize( | |
64 | errorOnLastNdays, c(0,10), kernel=kernel, simtype="endo")$minimum | |
65 | } | |
3d69ff21 BA |
66 | |
67 | if (simtype == "endo") | |
af3b84f4 | 68 | { |
98e958ca | 69 | return (private$.predictShapeAux(data, |
af3b84f4 BA |
70 | fdays, today, horizon, h_best_endo, kernel, "endo", TRUE)) |
71 | } | |
3d69ff21 | 72 | if (simtype == "exo") |
af3b84f4 | 73 | { |
98e958ca | 74 | return (private$.predictShapeAux(data, |
af3b84f4 BA |
75 | fdays, today, horizon, h_best_exo, kernel, "exo", TRUE)) |
76 | } | |
3d69ff21 BA |
77 | if (simtype == "mix") |
78 | { | |
f17665c7 | 79 | h_best_mix = c(h_best_endo,h_best_exo) |
98e958ca | 80 | return(private$.predictShapeAux(data, |
af3b84f4 | 81 | fdays, today, horizon, h_best_mix, kernel, "mix", TRUE)) |
3d69ff21 | 82 | } |
25b75559 BA |
83 | } |
84 | ), | |
85 | private = list( | |
3d69ff21 | 86 | # Precondition: "today" is full (no NAs) |
98e958ca | 87 | .predictShapeAux = function(data, fdays, today, horizon, h, kernel, simtype, final_call) |
3d69ff21 | 88 | { |
f17665c7 | 89 | fdays = fdays[ fdays < today ] |
3d69ff21 | 90 | # TODO: 3 = magic number |
f17665c7 | 91 | if (length(fdays) < 3) |
3d69ff21 BA |
92 | return (NA) |
93 | ||
94 | if (simtype != "exo") | |
95 | { | |
96 | h_endo = ifelse(simtype=="mix", h[1], h) | |
97 | ||
98 | # Distances from last observed day to days in the past | |
f17665c7 BA |
99 | distances2 = rep(NA, length(fdays)) |
100 | for (i in seq_along(fdays)) | |
3d69ff21 | 101 | { |
25b75559 | 102 | delta = data$getCenteredSerie(today) - data$getCenteredSerie(fdays[i]) |
3d69ff21 | 103 | # Require at least half of non-NA common values to compute the distance |
546b0cb6 BA |
104 | if ( !any( is.na(delta) ) ) |
105 | distances2[i] = mean(delta^2) | |
3d69ff21 BA |
106 | } |
107 | ||
108 | sd_dist = sd(distances2) | |
99f83c9a | 109 | if (sd_dist < .Machine$double.eps) |
546b0cb6 | 110 | { |
fa5b7bfc | 111 | # warning("All computed distances are very close: stdev too small") |
99f83c9a | 112 | sd_dist = 1 #mostly for tests... FIXME: |
546b0cb6 | 113 | } |
3d69ff21 | 114 | simils_endo = |
99f83c9a | 115 | if (kernel=="Gauss") |
3d69ff21 | 116 | exp(-distances2/(sd_dist*h_endo^2)) |
546b0cb6 BA |
117 | else |
118 | { | |
119 | # Epanechnikov | |
3d69ff21 BA |
120 | u = 1 - distances2/(sd_dist*h_endo^2) |
121 | u[abs(u)>1] = 0. | |
122 | u | |
123 | } | |
124 | } | |
125 | ||
126 | if (simtype != "endo") | |
127 | { | |
128 | h_exo = ifelse(simtype=="mix", h[2], h) | |
129 | ||
25b75559 BA |
130 | M = matrix( nrow=1+length(fdays), ncol=1+length(data$getExo(today)) ) |
131 | M[1,] = c( data$getLevel(today), as.double(data$getExo(today)) ) | |
f17665c7 | 132 | for (i in seq_along(fdays)) |
25b75559 | 133 | M[i+1,] = c( data$getLevel(fdays[i]), as.double(data$getExo(fdays[i])) ) |
3d69ff21 BA |
134 | |
135 | sigma = cov(M) #NOTE: robust covariance is way too slow | |
613a986f | 136 | sigma_inv = solve(sigma) #TODO: use pseudo-inverse if needed? |
3d69ff21 BA |
137 | |
138 | # Distances from last observed day to days in the past | |
139 | distances2 = rep(NA, nrow(M)-1) | |
140 | for (i in 2:nrow(M)) | |
141 | { | |
142 | delta = M[1,] - M[i,] | |
143 | distances2[i-1] = delta %*% sigma_inv %*% delta | |
144 | } | |
145 | ||
146 | sd_dist = sd(distances2) | |
546b0cb6 BA |
147 | if (sd_dist < .Machine$double.eps) |
148 | { | |
fa5b7bfc | 149 | # warning("All computed distances are very close: stdev too small") |
546b0cb6 BA |
150 | sd_dist = 1 #mostly for tests... FIXME: |
151 | } | |
3d69ff21 | 152 | simils_exo = |
f17665c7 | 153 | if (kernel=="Gauss") |
3d69ff21 | 154 | exp(-distances2/(sd_dist*h_exo^2)) |
546b0cb6 BA |
155 | else |
156 | { | |
157 | # Epanechnikov | |
3d69ff21 BA |
158 | u = 1 - distances2/(sd_dist*h_exo^2) |
159 | u[abs(u)>1] = 0. | |
160 | u | |
161 | } | |
162 | } | |
163 | ||
3d69ff21 | 164 | similarities = |
f17665c7 | 165 | if (simtype == "exo") |
3d69ff21 | 166 | simils_exo |
f17665c7 BA |
167 | else if (simtype == "endo") |
168 | simils_endo | |
169 | else #mix | |
170 | simils_endo * simils_exo | |
3d69ff21 BA |
171 | |
172 | prediction = rep(0, horizon) | |
a66a84b5 BA |
173 | for (i in seq_along(fdays)) |
174 | prediction = prediction + similarities[i] * data$getSerie(fdays[i]+1)[1:horizon] | |
3d69ff21 | 175 | prediction = prediction / sum(similarities, na.rm=TRUE) |
99f83c9a | 176 | |
3d69ff21 BA |
177 | if (final_call) |
178 | { | |
a66a84b5 BA |
179 | private$.params$weights <- similarities |
180 | private$.params$indices <- fdays | |
181 | private$.params$window <- | |
546b0cb6 | 182 | if (simtype=="endo") |
3d69ff21 | 183 | h_endo |
546b0cb6 | 184 | else if (simtype=="exo") |
3d69ff21 | 185 | h_exo |
546b0cb6 | 186 | else #mix |
3d69ff21 | 187 | c(h_endo,h_exo) |
3d69ff21 | 188 | } |
99f83c9a | 189 | |
3d69ff21 BA |
190 | return (prediction) |
191 | } | |
192 | ) | |
193 | ) |