Commit | Line | Data |
---|---|---|
17ea2f13 BA |
1 | library(agghoo) |
2 | ||
3 | data(iris) #already there | |
4 | library(mlbench) | |
5 | data(PimaIndiansDiabetes) | |
6 | ||
7 | # Run only agghoo on iris dataset (split into train/test, etc). | |
8 | # Default parameters: see ?agghoo and ?AgghooCV | |
9 | compareTo(iris[,-5], iris[,5], agghoo_run) | |
10 | ||
11 | # Run both agghoo and standard CV, specifiying some parameters. | |
12 | compareTo(iris[,-5], iris[,5], list(agghoo_run, standardCV_run), gmodel="tree") | |
13 | compareTo(iris[,-5], iris[,5], list(agghoo_run, standardCV_run), | |
14 | gmodel="knn", params=c(3, 7, 13, 17, 23, 31), | |
15 | CV = list(type="vfold", V=5, shuffle=T)) | |
16 | ||
17 | # Run both agghoo and standard CV, averaging errors over N=10 runs | |
18 | # (possible for a single method but wouldn't make much sense...). | |
19 | compareMulti(PimaIndiansDiabetes[,-9], PimaIndiansDiabetes[,9], | |
20 | list(agghoo_run, standardCV_run), N=10, gmodel="rf") | |
21 | ||
22 | # Compare several values of V | |
23 | compareRange(PimaIndiansDiabetes[,-9], PimaIndiansDiabetes[,9], | |
24 | list(agghoo_run, standardCV_run), N=10, V_range=c(10, 20, 30)) | |
25 | ||
26 | # For example to use average of squared differences. | |
27 | # Default is "mean(abs(y1 - y2))". | |
28 | loss2 <- function(y1, y2) mean((y1 - y2)^2) | |
29 | ||
30 | # In regression on artificial datasets (TODO: real data?) | |
31 | data <- mlbench.twonorm(300, 3)$x | |
32 | target <- rowSums(data) | |
33 | compareMulti(data, target, list(agghoo_run, standardCV_run), | |
34 | N=10, gmodel="tree", params=c(1, 3, 5, 7, 9), loss=loss2, | |
35 | CV = list(type="MC", V=12, test_size=0.3)) | |
36 | ||
37 | compareMulti(data, target, list(agghoo_run, standardCV_run), | |
38 | N=10, floss=loss2, CV = list(type="vfold", V=10, shuffle=F)) | |
39 | ||
40 | # Random tests to check that method doesn't fail in 1D case | |
41 | M <- matrix(rnorm(200), ncol=2) | |
42 | compareTo(as.matrix(M[,-2]), M[,2], list(agghoo_run, standardCV_run), gmodel="knn") | |
43 | compareTo(as.matrix(M[,-2]), M[,2], list(agghoo_run, standardCV_run), gmodel="tree") |