Commit | Line | Data |
---|---|---|
56857861 BA |
1 | context("clustering") |
2 | ||
8702eb86 BA |
3 | #shorthand: map 1->1, 2->2, 3->3, 4->1, ..., 149->2, 150->3, ... (is base==3) |
4 | I = function(i, base) | |
5 | (i-1) %% base + 1 | |
56857861 BA |
6 | |
7 | test_that("computeClusters1 behave as expected", | |
8 | { | |
8702eb86 BA |
9 | require("MASS", quietly=TRUE) |
10 | require("clue", quietly=TRUE) | |
56857861 | 11 | |
8702eb86 BA |
12 | # 3 gaussian clusters, 300 items; and then 7 gaussian clusters, 490 items |
13 | n = 300 | |
14 | d = 5 | |
15 | K = 3 | |
16 | for (ndK in list( c(300,5,3), c(490,10,7) )) | |
17 | { | |
18 | n = ndK[1] ; d = ndK[2] ; K = ndK[3] | |
19 | cs = n/K #cluster size | |
20 | Id = diag(d) | |
21 | coefs = do.call(rbind, | |
22 | lapply(1:K, function(i) MASS::mvrnorm(cs, c(rep(0,(i-1)),5,rep(0,d-i)), Id))) | |
23 | indices_medoids = computeClusters1(coefs, K) | |
24 | # Get coefs assignments (to medoids) | |
25 | assignment = sapply(seq_len(n), function(i) | |
26 | which.min( rowSums( sweep(coefs[indices_medoids,],2,coefs[i,],'-')^2 ) ) ) | |
27 | for (i in 1:K) | |
28 | expect_equal(sum(assignment==i), cs, tolerance=5) | |
29 | ||
30 | costs_matrix = matrix(nrow=K,ncol=K) | |
31 | for (i in 1:K) | |
32 | { | |
33 | for (j in 1:K) | |
34 | { | |
35 | # assign i (in result) to j (order 1,2,3) | |
36 | costs_matrix[i,j] = abs( mean(assignment[((i-1)*cs+1):(i*cs)]) - j ) | |
37 | } | |
38 | } | |
39 | permutation = as.integer( clue::solve_LSAP(costs_matrix) ) | |
40 | for (i in 1:K) | |
41 | { | |
42 | expect_equal( | |
43 | mean(assignment[((i-1)*cs+1):(i*cs)]), permutation[i], tolerance=0.05) | |
44 | } | |
45 | } | |
56857861 BA |
46 | }) |
47 | ||
48 | test_that("computeSynchrones behave as expected", | |
49 | { | |
8702eb86 BA |
50 | n = 300 |
51 | x = seq(0,9.5,0.1) | |
52 | L = length(x) #96 1/4h | |
53 | K = 3 | |
54 | s1 = cos(x) | |
55 | s2 = sin(x) | |
56 | s3 = c( s1[1:(L%/%2)] , s2[(L%/%2+1):L] ) | |
57 | #sum((s1-s2)^2) == 96 | |
58 | #sum((s1-s3)^2) == 58 | |
59 | #sum((s2-s3)^2) == 38 | |
60 | s = list(s1, s2, s3) | |
61 | series = matrix(nrow=n, ncol=L) | |
62 | for (i in seq_len(n)) | |
63 | series[i,] = s[[I(i,K)]] + rnorm(L,sd=0.01) | |
64 | getRefSeries = function(indices) { | |
65 | indices = indices[indices < n] | |
66 | if (length(indices)>0) series[indices,] else NULL | |
67 | } | |
68 | synchrones = computeSynchrones(rbind(s1,s2,s3), getRefSeries, 100) | |
56857861 | 69 | |
8702eb86 BA |
70 | expect_equal(dim(synchrones), c(K,L)) |
71 | for (i in 1:K) | |
72 | expect_equal(synchrones[i,], s[[i]], tolerance=0.01) | |
56857861 BA |
73 | }) |
74 | ||
8702eb86 BA |
75 | computeDistortion = function(series, medoids) |
76 | { | |
77 | n = nrow(series) ; L = ncol(series) | |
78 | distortion = 0. | |
79 | for (i in seq_len(n)) | |
80 | distortion = distortion + min( rowSums( sweep(medoids,2,series[i,],'-')^2 ) / L ) | |
81 | distortion / n | |
82 | } | |
83 | ||
56857861 BA |
84 | test_that("computeClusters2 behave as expected", |
85 | { | |
8702eb86 BA |
86 | n = 900 |
87 | x = seq(0,9.5,0.1) | |
88 | L = length(x) #96 1/4h | |
89 | K1 = 60 | |
90 | K2 = 3 | |
91 | #for (i in 1:60) {plot(x^(1+i/30)*cos(x+i),type="l",col=i,ylim=c(-50,50)); par(new=TRUE)} | |
92 | s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) ) | |
93 | series = matrix(nrow=n, ncol=L) | |
94 | for (i in seq_len(n)) | |
95 | series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01) | |
96 | getRefSeries = function(indices) { | |
97 | indices = indices[indices < n] | |
98 | if (length(indices)>0) series[indices,] else NULL | |
99 | } | |
100 | # Artificially simulate 60 medoids - perfect situation, all equal to one of the refs | |
101 | medoids_K1 = do.call(rbind, lapply( 1:K1, function(i) s[[I(i,K1)]] ) ) | |
102 | medoids_K2 = computeClusters2(medoids_K1, K2, getRefSeries, 75) | |
56857861 | 103 | |
8702eb86 BA |
104 | expect_equal(dim(medoids_K2), c(K2,L)) |
105 | # Not easy to evaluate result: at least we expect it to be better than random selection of | |
106 | # medoids within 1...K1 (among references) | |
107 | ||
108 | distorGood = computeDistortion(series, medoids_K2) | |
109 | for (i in 1:3) | |
110 | expect_lte( distorGood, computeDistortion(series,medoids_K1[sample(1:K1, K2),]) ) | |
56857861 BA |
111 | }) |
112 | ||
113 | test_that("clusteringTask + computeClusters2 behave as expected", | |
114 | { | |
8702eb86 BA |
115 | n = 900 |
116 | x = seq(0,9.5,0.1) | |
117 | L = length(x) #96 1/4h | |
118 | K1 = 60 | |
119 | K2 = 3 | |
120 | s = lapply( seq_len(K1), function(i) x^(1+i/30)*cos(x+i) ) | |
121 | series = matrix(nrow=n, ncol=L) | |
122 | for (i in seq_len(n)) | |
123 | series[i,] = s[[I(i,K1)]] + rnorm(L,sd=0.01) | |
124 | getSeries = function(indices) { | |
125 | indices = indices[indices <= n] | |
126 | if (length(indices)>0) series[indices,] else NULL | |
127 | } | |
128 | wf = "haar" | |
129 | getCoefs = function(indices) curvesToCoefs(series[indices,],wf) | |
130 | medoids_K1 = getSeries( clusteringTask(1:n, getCoefs, K1, 75, 4) ) | |
131 | medoids_K2 = computeClusters2(medoids_K1, K2, getSeries, 120) | |
56857861 | 132 | |
8702eb86 BA |
133 | expect_equal(dim(medoids_K1), c(K1,L)) |
134 | expect_equal(dim(medoids_K2), c(K2,L)) | |
135 | # Not easy to evaluate result: at least we expect it to be better than random selection of | |
136 | # medoids within 1...K1 (among references) | |
137 | distorGood = computeDistortion(series, medoids_K2) | |
138 | for (i in 1:3) | |
139 | expect_lte( distorGood, computeDistortion(series,medoids_K1[sample(1:K1, K2),]) ) | |
56857861 | 140 | }) |